
EasyChair Preprint
№ 15688

Open Source 5G Network Deployment

Andrew Fox

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 8, 2025

Open Source 5G Network Deployment

Andrew Fox

Network and Computer Security

SUNY Polytechnic Institute

Utica, NY

foxaj3@sunypoly.edu

Abstract— In the networking industry, there is a lack of tools

and software that provide a testing platform to experiment with

mobile networks. Without these platforms to experiment with,

researchers can only present concepts for changes to mobile

networks and cannot prove their work is practical. Open AI

Cellular (OAIC) provides the software and tools to install,

deploy, and configure a 5G network. OAIC is a 5G network

research and experimentation platform where researchers can

learn more about mobile networks with simulated equipment

that matches today's networking standards. You will learn more

about the core components needed to create a 5G network and

experiment with a wireless mobile network. The experimental

results highlight OAIC’s ability to handle Denial of Service

(DOS) attacks with little impact on network performance. This

project also highlights implementing network slices within OAIC

to reduce the effects of a DOS attack. This paper provides a new

perspective on mobile network experiments and developments

and offers valuable insight into the future of 5G and 6G

networks.

I. INTRODUCTION

A. Motivation

 5G networks are discussed briefly in some of my

classes, but we didn’t get to go into further details on it. I

learned about 5G and what goes into a mobile network, but

with a hands-on project. I began researching 5G networks one

year ago on campus as a research job and found that I loved

learning more about this topic. I was trying to develop a low-

budget project to experiment with a small-scale 5G network

but could not do it. While researching, I found open-source

software allowing users to set up their own 5G network from

their computers. I wanted to use this tool to learn more about

5G but also to experiment with the tool and see what features it

has to offer.

 The main goal of this project is to share information

about this tool and to encourage students to experiment with it

to learn more about 5G networks. Another goal of this project

is to fill the gap in hands-on learning with 5G. For many in the

IT industry wanting to experiment more with 5G, finding ways

to apply what you learn about mobile networks takes time and

effort. Few resources are available for testing or experimenting

with 5G networks, especially open-source ones. This project

provides zero-cost, open-source, well-documented software to

help fill the gap in hands-on learning with 5G.

B. Roadmap

• Objectives – The Open AI Cellular tool aims to

research with simulated equipment that matches

what is used in the industry. Within the industry,

there is a lack of tools that allow researchers and

developers to experiment with 5G and test out

proposals to see if their ideas are possible. This

paper highlights the importance of OAIC and

how it can help further develop the future of

mobile networks.

• Methodology – I will go in-depth about the

equipment and installation requirements for this

project. The installation process for OAIC will be

explained in detail, along with the challenges I

encountered while installing it. I will explain the

importance of each tool used to make OAIC run. I

will talk about the critical components of the 5G

network that OAIC will run. I will also discuss the

various experiments I ran with OAIC. These

experiments include a DOS attack and

implementing network slicing on my network.

• Contributions – I will highlight the results of my

experiment, showing how OAIC can be useful

when developing new ideas for future generations

of mobile networks. I will also share potential

applications for solving a problem based on the

output of my experiments.

II. BACKGROUND

A. 5G

 5G is the fifth generation of mobile networks,

intending to provide more availability, reliability, and lower

latency than previous generations. 5G can support a 100x

traffic increase compared to 4G, data rates of over 100

Megabits-per-second (Mbps), and utilizes Millimeter waves for

better spectrum use [1]. With the demand for fast connections

growing, 5G was a massive milestone for wireless

communications.

B. Open AI Cellular (OAIC)

Fig. 1. Open AI Cellular (OAIC) Framework [2].

 Open AI Cellular (OAIC) is an open-source effort that

provides libraries and toolsets that contain AI controllers and

an AI testing framework [2]. This effort helps the development

and research of AI-enabled cellular radio networks. OAIC

provides a framework, as shown in Figure 1, that

acknowledges various open-source 5G software, which allows

users to implement radio access network intelligent controllers

(RICs) and O-RAN interfaces for testbed and production real-

time experiments. OAIC will enable you to install, configure,

and run your own 5G network from a single device for research

and experimentation. Each component used to simulate a 5G

network matches the equipment used in the real world for

mobile networking.

C. Ubuntu

 Ubuntu is an open-source operating system used

throughout this project and is where OAIC will run [3]. Ubuntu

is a flavor of Linux that is stable and secure. Although there are

other Linux flavors, Ubuntu is the only version of Linux that is

used to install and configure OAIC.

D. Docker

 Docker is a platform that can utilize containers to run

applications in a small, separate environment [4]. Containers

are images that have the required software to run packaged

together. They are like virtual machines (VMs) but are lighter

and less resource-intensive. These containers are essential for

the OAIC installation because they require containers for

specific components.

E. Kubernetes

 Kubernetes is an open-source platform for automating

deployment, scaling, and operations of application containers

across clusters of hosts [5]. Placement, restarts, replication, and

autoscaling of containers are all automated using Kubernetes.

In each of the pods being run by Kubernetes, there could be

any number of containers being used. It is an essential tool for

OAIC because the containers and pods are running separate

components and software, and Kubernetes manages it all for

us.

F. Helm

 Helm is a package manager for Kubernetes, which is

the equivalent of apt installing packages [6]. It deploys

packaged applications, which are called Helm Charts, on

Kubernetes clusters. Helm Charts contain configuration and

package information that will be essential for OAIC to run. The

Helm Charts are used in this project for package and

configuration management.

G. srsRAN

 srsRAN is a 5G software radio suite developed by

SRS (Software Radio Systems). It was designed to create open-

source, high-performance software radio solutions for 4G and

5G [7]. The srsRAN suite includes srsUE, srsENB, and

srsEPC. Everything in the suite represents the different

components that go into a mobile network. This is important

software that is needed for OAIC to run.

H. Iperf3

Fig. 2. The Iperf3 command was entered while running OAIC.

 Iperf is an open-source tool that performs various

measurements of network bandwidth and packet loss on IP

networks [8]. In this project, we will be using the third version

of this software, Iperf3. This tool tracks the OAIC component's

network performance, which is critical for ensuring the

components are running. Figure 2 shows Iperf3 running with

OAIC.

I. Denial of Service (DOS) Attack

 A Denial of Service (DOS) attack occurs when a

malicious actor prevents users from accessing devices and

network resources [9]. DOS attacks frequently work by

flooding or overwhelming a targeted device with requests until

the device can no longer process normal traffic. In this project,

we will perform two DOS attacks against OAIC components.

The first DOS attack will be against the network base station,

and the second DOS attack will also be on the base station, but

with network slicing throughout the network.

J. Hping3

Fig. 3. Hping3 running a DOS against an OAIC component.

 Hping is a tool used to create and send custom

network packets (ICMP/UDP/TCP) and displays replies like

ping would [10]. Although it is a more advanced ping, it can be

used to run different types of network attacks. In this project,

we will be using the third version of this tool to run a DOS

attack against the OAIC components. One of the uses of the

OAIC tool is to experiment with 5G components without any

effect on an actual network. Figure 3 shows hping3 running a

DOS attack against an OAIC component.

K. NexRAN

 The NexRAN app implements RAN slicing by

sending instructions to RAN nodes that perform custom

resource allocation and bind UEs to those slices of allocated

resources [11]. For this project, we will slice our 5G network

into fast and slow slices. The number of slices in the network

will affect the network's data rates, and we will test how well

these slices run with different numbers of slices. We will also

test how these slices perform while under a DOS attack.

L. Intended Audience

 This project was developed for various purposes and

audiences. Students and researchers are the target audience,

intended to help both learn and experiment with 5G networks.

OAIC allows users to configure, deploy, and experiment with a

5G network and its components. For students, OAIC provides

a learning experience for students interested in topics related to

wireless systems. You can learn about the various components

and parts of a wireless network, like a 5G network. Students

can also run multiple types of attacks against this network,

allowing them to learn other topics in the cybersecurity field.

For researchers, OAIC will enable you to run different

experiments and attacks to see how various components

perform. OAIC also provides a testing platform where you can

run programs and scripts within the platform to produce data

outputs. This project will attempt to run OAIC and experiment

with it to test if it is a good fit for students and researchers.

III. PROCEDURE

A. Lab Setup

Fig. 4. The 5G Research Testbed. The server labeled “Dell EMC” is the

server that will be used for this project.

 For my capstone, I used a testbed designed for

researching and experimenting with open-source 5G tools. This

testbed consists of 3 servers: small, medium, and large. They

are labeled based on the storage size of each server. For this

project, I will use the large server, a Dell PowerEdge R7515

Rack Server, which has Ubuntu 24.04 as its operating system

[12]. Figure 4 shows the testbed where OAIC will be running.

OAIC’s components and additional software are fully installed

and functional on this server. Although I am using a server for

this project, this can also be installed on a laptop or PC at

home.

 OAIC provides instructions for allowing users to

create their own 5G network. This can be used for testing 5G

network components, learning about 5G, and developing tools

and software related to mobile networks. When running a 5G

network with OAIC, there are a few components used that are

important to know. The first component is the EPC, which

represents the core of the network. It is used for session

management, mobility management, and authentication. The

second component is the gNB/gNodeB, which functions like a

base station, providing connectivity between the EPC and the

user. The third component is the User Equipment (UE), which

is the mobile device that will be connected to the 5G network.

B. OAIC Installation

 The OAIC installation process has various stages that

must be completed in the correct order. Each stage is

important, as it configures and sets up various tools for OAIC

to run properly.

• Hardware & Software Requirements – This

section covers the requirements needed to install

OAIC and its dependencies. We also discuss the

different ways we can set up OAIC to make it

easier to install.

• O-RAN Near-Real Time RIC & srsRAN

Installation – In this section, we have four

important steps that we follow to install the O-

RAN Near-Real Time RIC. The first step is to

install Ubuntu and have the operating system

running. The second step is installing Docker,

Kubernetes, and Helm, all critical programs

needed to run OAIC. The third step is to build a

modified docker image using OAIC’s

DockerHub images. The last step is to deploy the

Near-Real Time RIC, which requires the

Kubernetes clusters to be deployed and running.

This section also has some installations to get

srsRAN installed, which includes ZeroMQ and

Ettus UHD binary.

• Running Your Own 5G Network – This section

covers all of the components that OAIC will use

to simulate a 5G network. I will explain the

purpose and use of each component and highlight

the communication that occurs between them. I

will also share some challenges I encountered

while running OAIC with the components for the

first time.

1) Hardware & Software Requirements

 OAIC will be installed on any device that meets the

specifications provided in OAIC’s installation documentation.

The operating system required for OAIC is Ubuntu version

20.04 or later. The hardware required includes a CPU with 2-4

cores, 16GB or more of RAM, and a minimum storage

capacity of 80GB. To allow non-Linux users to install and

configure OAIC, users can even install the software on a

virtual machine (VM), which has the benefit of running

multiple installations of OAIC on different VMs. Students can

even install OAIC for personal use on their computers if they

meet the software’s requirements. As previously mentioned,

we will be installing OAIC on one of the servers in our testbed

to utilize equipment used in the IT industry.

2) O-RAN Near-Real Time RIC & srsRAN Installation

 After ensuring our system meets the software and

hardware requirements, we can install the software needed to

get OAIC up and running. The first thing we need to get

running is the O-RAN RIC, which is responsible for

controlling and optimizing Radio Access Network (RAN)

functions. OAIC documentation provides us with a script, as

shown in Figure 5, that will install Kubernetes, Docker, and

Helm. The script will also install pods that help with cluster,

service creation, and internetworking between services.

Fig. 5. OAIC created a small portion of the script to install Kubernetes,

Docker, and Helm.

 While running the script, I ran into some problems

with the script finishing successfully. The script got stuck in a

loop while configuring and running the pods. Figure 6 shows a

message saying, "No resources found in kube-system

namespace." This issue with the script not being able to find

the resources resulted in a loop where the script was waiting

for the eight pods to run. After spending hours researching this

issue, I realized that the various solutions provided for solving

this problem that I had attempted to do were not working. I

then decided to post about this issue on OAIC’s GitHub page,

hoping a developer would assist with this problem.

Unfortunately, there was no response after waiting for multiple

weeks, so I had to troubleshoot this issue independently.

Eventually, I solved this issue by running the script a second

time, and the eight pods started to run. Figure 7 shows a list of

all the pods created after the script is finished running.

Fig. 6. The pod configuration issue.

Fig. 7. The Kubernetes list of running pods.

 The next step is to build a modified docker image.

First, we must create a local docker registry to host the docker

images. A local docker registry is a registry you host and

manage your own infrastructure. Once the docker registry is

created, we need to pull a docker image from OAIC’s

DockerHub and then push it to the local registry, as shown in

Figure 8. With the docker image pulled and pushed, we can

then deploy the near-real-time RIC. The specific command we

need to use to deploy the RIC uses something called a recipe.

A recipe provides customized requirements for the components

of a deployment group for a specific deployment site. With the

specific recipe designed for OAIC, it is deployed with the near-

real-time RIC.

Fig. 8. Building a modified docker image.

 With the O-RAN Near-Real Time RIC installed, we

can install the srsRAN. We need to have ZeroMQ installed, in

which srsRAN uses its networking library to transfer radio

samples between applications. We also need to have Ettus

UHD binary and the asn1c compiler installed. The installation

process for srsRAN is simple and requires running a script

created by OAIC to get it installed and running. Figure 9 shows

srsRAN installing on the server.

Fig. 9. The srsRAN installation process.

3) Running Your Own 5G Network

 With everything installed, we can start up all the

components needed to run a 5G network. Before we start each

component, we need to remember that each component must

be started in the correct order. If they are not opened in the

correct order, OAIC will not run properly. The components are

all running on separate terminal windows, as they are each

running different things. The first component we will start is

the EPC, which represents the core of the network [13]. Figure

10 shows the command to start the EPC and how it looks while

running.

Fig. 10. OAIC’s 5G network’s EPC running.

 The next component to start is the gNB/gNodeB,

which represents the base station or cell tower [14]. Before the

command to start the gNodeB, we need to note some critical IP

information. We need to find the current machine’s IP address

and the IP address of the E2 Termination service at the near-

RT RIC. Once we have these IP addresses, we can then run our

gNodeB. Figure 11 shows the IP addresses being collected and

the gNodeB running. The last component we need to start is

the UE, which is the user equipment or the device connecting

to the cell tower [15]. Figure 12 shows the UE running.

Fig. 11. OAIC’s 5G network’s gNB/gNodeB running.

Fig. 12. OAIC’s 5G network’s UE running.

 To confirm that every component is connected to each

other, we need to make sure that an IP address for the UE is

shown within the terminal, like in Figure 12. With every

component running in our 5G network and an IP address

provided for the UE, we must exchange traffic to confirm that

our network works correctly. This will confirm whether the UE

and EPC can communicate with each other. We will use iperf3

to check that there is incoming traffic from both the UE and

EPC. Figure 13 shows iperf running from the EPC side, and

Figure 14 shows iperf running from the UE side.

Fig. 13. Iperf running from the EPC side of the network.

Fig. 14. Iperf running from the EU side of the network.

 While starting each of these components for the first

time, I ran into various issues that prevented me from running

them all together. The first issue was with gNodeB, where it

would get stuck in a loop while trying to establish a socket

connection to a specific IP address. While looking into this IP

address, I found that it is the IP address for a specific pod,

which was the service-ricplt-e2term-sctp-alpha pod. After

hours of attempting to fix this issue, I went to OAIC’s GitHub

page to see if anyone else had experienced this issue. One user

ran into the same issue and claimed the solution was to “fix the

Kubernetes IP address when installing it.” This solution needed

clarification, and I needed help figuring out how to do that. I

restarted the OAIC installation from scratch, and the issue was

fixed. I still do not know other solutions for this issue, but it

was resolved for me. Figure 15 shows this issue and highlights

the pod that was involved.

Fig. 15. Socket connection to pod failure.

 The second issue I ran into while starting OAIC's

components was that leaving components alone for more than

10 seconds caused them to go idle. I found this out when I did

not use iperf3 to send traffic from the EPC side of the network

to the UE side. When I did not send this traffic, the UE would

prompt a message in the terminal saying “RRC IDLE,” as

shown in Figure 16. The RRC (Radio Resource Control) is the

process by which the UE and gNodeB establish a connection. I

eventually realized that I needed to send traffic between

components for the network to continue running. Without the

traffic running between the two, the RRC process cannot

finish, resulting in the components not working with each

other.

Fig. 16. RRC idle problem.

C. Experiments

1) Denial-of-Service (DOS)

Fig. 17. The bit rate of the 5G network per hour. Hours 14 and 15 are with

normal traffic, and hours 16 and 17 are with DOS attack traffic.

 Our first experiment will test how well components

within the configured OAIC installation can handle Denial-of-

service (DOS) traffic. We ran normal traffic (pings) on the

simulated 5G network for 2 hours to get a baseline of data

rates, amount of traffic sent, and component performance.

After running normal traffic, we ran a DOS attack on the

gNodeB for 2 hours to compare component performance with

the normal traffic performance.

 For the normal traffic, we used vnStat to track

network and component performance and ping to send traffic

within the network [16]. vnStat is a tool to track data involving

specific network adapters and creates graphs with the data

collected. The ping traffic will be used as a baseline to see the

network performance without any large traffic. We would ping

for 2 hours and then transition into running a DOS attack on

the gNodeB. We used hping3 to flood the network with

requests for our DOS attack to see how it would impact overall

performance. While monitoring normal and DOS traffic, vnStat

created a graph showing data rates per hour, logged ping time

to see any delays in responses, and logged iperf bitrates from

both the user equipment and network side. My prediction for

this experiment is that there will be a slight decrease in overall

network performance.

Fig. 18. A comparison of bit rates during normal traffic and DOS traffic.

 The results from this experiment show that there was

a decrease in bit rate and longer response times while running

the DOS attack. Figure 17 shows the bit rate from the network

interface srs_spgw_sgi, where this AI-enabled 5G network is

running. The figure shows the bit rate increasing from hours 14

to 15, which is when the normal traffic was sent. It also

indicates that the bit rate decreased from hours 15 to 16 when

the DOS attack began to run. Figure 18 shows the second-by-

second bit rate of the base station, tracked with iperf, from both

the normal and DOS traffic over 2 hours. The normal traffic bit

rate is higher overall, while the DOS traffic is lower and has

multiple spikes where the bit rate drops close to 0. We can see

this when comparing the averages of bit rates under normal and

DOS conditions. The bit rate during normal traffic averaged

1.59 Mbits/sec, while the bit rate averaged 1.28 Mbits/sec

during DOS traffic. This proves that the DOS had an impact on

the network's bit rate.

Fig. 19. A comparison of ping response time during normal traffic and DOS

traffic.

 Figure 19 shows the second-by-second ping response

time when pinging the base station during normal and DOS

traffic over 2 hours. The response time was quicker during

normal traffic, while there were moments during the DOS

traffic when it would take more than 500ms for a response. The

attack has impacted the network response time, with many

spikes in response time. This is shown when we compare the

average ping response time in both types of traffic. The

average ping response time under normal traffic was 66.38ms,

while the average response time under DOS traffic was

71.43ms.

2. Denial-of-Service (DOS) on Network Slices

Fig. 20. Implementing slow slicing (top) and fast slicing (bottom).

 Our second experiment will test how well components

within the configured OAIC installation with RAN slicing can

handle Denial-of-service (DOS) traffic. The NexRAN tool is

used to implement these slices on the network. OAIC offers

two different ways of implementing RAN slicing, which

includes slow and fast slices. Slow slicing is where there are

fewer slices, meaning higher data rates for each slice. Fast

slicing is where there are more slices, meaning lower data

rates. For each type of slicing, we collected ping and iperf

information in normal traffic for 2 hours, then collected the

same information while under a DOS attack for 2 hours. Figure

20 shows the implementation of slow and fast slices on the

simulated 5G network.

Fig. 21. A comparison of bit rates during slow-sliced normal traffic and DOS

traffic.

 This experiment's results show a noticeable decrease

in bit rate and slightly longer response times for the slow slices.

Figure 21 shows the second-by-second bit rate of the base

station with slow slices, tracked with iperf, from both the

normal and DOS traffic over 2 hours. The normal traffic bit

rate is higher overall, while the DOS traffic is lower, and both

had a significant spike towards the beginning, where their bit

rate reached below 1 Mbit/sec. We can confirm that DOS

traffic's average bit rate was lower by looking at the average bit

rate in normal traffic. The average bit rate for the slow sliced

network in normal traffic was 2.51 Mbits/sec, while the

average bit rate in DOS traffic was 2.16 Mbits/sec. When

comparing these results to the non-sliced network, the slow

sliced network had jumps in data rates from high to low, which

is something to pay attention to. There are also fewer spikes

where the bit rate reaches below 1 Mbit/sec.

Fig. 22. A comparison of ping response time during slow-sliced normal traffic

and DOS traffic.

 Figure 22 shows the second-by-second ping response

time when pinging the base station with slow slices during

normal and DOS traffic over 2 hours. The ping response time

was faster during normal traffic, but there were only a few

spikes where the response time was almost 400ms. There were

fewer spikes in response time than the non-sliced network,

except for one massive spike in the slow sliced network

towards the beginning. Looking at the ping response time

averages in both traffic conditions, we see a higher ping

response time under DOS conditions. The average ping

response time in normal traffic conditions was 143.83ms, while

the average ping response in DOS traffic conditions was

165.53ms.

Fig. 23. A comparison of bit rates during fast-sliced normal traffic and DOS

traffic.

 The results from this experiment show that the fast

slices' bit rate slightly decreases during a DOS attack. Figure

23 shows the second-by-second bit rate of the base station with

fast slices, tracked with iperf, from both the normal and DOS

traffic over 2 hours. Although the bit rate during the DOS is

slightly lower, the attack did not significantly impact network

performance. The fast slices managed this attack very well. We

can prove this by looking at the bit rate averages in both types

of traffic. The average bit rate in normal traffic is 1.37

Mbits/sec, while the average bit rate in DOS traffic is 1.16

Mbits/sec.

Fig. 24. A comparison of ping response time during fast-sliced normal traffic

and DOS traffic.

 Figure 24 shows the second-by-second ping response

time when pinging the base station with fast slices during

normal and DOS traffic over 2 hours. There is a noticeable

difference in response time between the normal and DOS

traffic. he DOS traffic had longer response times than normal

traffic, which is the common trend with each experiment. The

average ping response time in normal traffic was 245.57ms,

while the average ping response time in DOS traffic was

288.97ms.

 Figure 25 summarizes the key metrics for each

network scenario covered in these experiments. If we compare

each of these scenarios, the slow-sliced network had the best

bit rate averages, while the normal network had the lowest ping

response times. With these averages, we need to determine

where our priorities are with the network. In the normal

network, we have average bit rates with the lowest ping

response time. We have higher bit rates in the slow-sliced

network but slightly higher ping response times. We have

lower bit rates and higher ping response times in the fast-sliced

network. It all comes down to personal preferences.

NETWORK METRICS IN DIFFERENT SCENARIOS

Bit Rate
(Mbits/Sec

Ping
Response
Time (ms)

Normal Traffic 1.59 66.38

DOS Traffic 1.28 71.43

Slow-Sliced Normal
Traffic 2.51 143.83

Slow-Sliced DOS Traffic 2.16 165.53

Fast-Sliced Normal
Traffic 1.38 245.58

Fast-Sliced DOS Traffic 1.16 288.97

Fig. 25. A table that compares the average network bit rate and ping response

times with normal and DOS traffic, sliced and non-sliced, and slow-sliced vs

fast-sliced

IV. DISCUSSION

A. Conclusions

 Based on the results of these experiments, the sliced

5G network appeared to handle the DOS attack better than the

regular 5G network. The sliced network had little to no drops

in bit rate and fewer large spikes in ping response time

compared to the regular network. However, with slicing

involved, we see higher ping response times. Of all the

network options available, a slow-sliced network would work

best. The slow-sliced network has the highest bit rates and

slightly higher ping response times, but better than fast-slicing.

This experiment reveals that a DOS attack can impact OAIC's

mobile network's performance, but slow-slicing could reduce

the effects on network performance.

 With slicing reducing the effects of the DOS attack,

we need to discuss reasons why this was possible. Slicing

didn’t completely stop the DOS attack, but it allowed the

network to mitigate its impact to different slices. By having

multiple slices in the network, we are isolating different parts

of the network, allowing separate services to run without

interrupting what’s happening in the other slices. Based on this

experiment, one of these slices took the majority of the DOS

attack, while the rest was able to continue running as normal.

 This capstone project was a success. OAIC was

installed and deployed on the testbed, and we ran multiple

experiments successfully, meaning anyone can use this tool to

learn and experiment with 5G.

B. Challenges Faced

 While I was beginning the process of preparing the

lab for this capstone project, I ran into issues accessing the lab

that had the testbed I was using. I was locked out of the lab for

two weeks due to problems that were not in my control,

resulting in a delayed start from when I wanted to begin this

project. Along with the lab issues, I was also deciding whether

to do a research-based capstone project or a hands-on capstone

project. I decided to focus on a hands-on capstone since I

would be using equipment, and it’s a project that students can

also try and set up.

 While I was focused on installing OAIC, I previously

described the various issues that held up the installation and

deployment of the software. The first issue was the

configuration of the pods during the installation. It caused me

to stay in a loop because it could not find a specific namespace.

The second issue was a socket connection issue with a

particular pod set up in Kubernetes. It prevented me from

running the gNodeB, one of the essential components. The

final issue was an idle error, where I needed to run network

traffic to keep the network functioning.

C. Lessons Learned

 It took a lot of trial and error to get OAIC running and

working correctly, but once it was working, its ability to test

5G components is helpful for those who want to experiment

with 5G. This tool allowed me to learn more about what goes

into making a 5G network and about industry-related tools,

such as Docker and Kubernetes.

 I also worked with a testbed, giving me the hands-on

experience I sought. In the testbed, I learned how to manage

and configure servers and how difficult it can be to run

multiple programs and services simultaneously on one device.

 If I had to restart this project, I would have tried

installing OAIC on multiple devices to see how the installation

process would have been. I successfully installed it on my

laptop and the servers in the testbed, but I want to know if the

installation process will run properly on other devices. I also

would like to try different types of attacks on the components,

such as a man-in-the-middle (MITM) attack, to capture traffic

and interfere with its communications. Trying to interfere

while the components were trying to establish a connection

with each other would have been interesting to try out.

V. CONCLUSION

 This project provides a detailed explanation of Open

AI Cellular (OAIC), its features, the installation process, and

deploying a 5G network on any device that it supports. It

provides a great learning experience for students or for those

interested in learning more about 5G networks. Not only can

OAIC be used by students, but it can advance research in 5G.

Projects using OAIC can be expanded to make changes to 5G

and the future generations of mobile networks. All the software

involved in making OAIC run is open source and available to

utilize. Anyone can get this up and running within an hour or

two.

 If given more time, I would have also included

OAIC’s testing platform, OAIC-T, for more experiments and

as an opportunity to learn more about programming [17].

OAIC-T would have allowed me to use test configuration files

to configure a testing environment and to run various actors to

test OAIC components. The tool captures statistics on

component usage, provides a visualization of these

performance metrics, and can provide any output as requested

in the test configuration files. This would have been a great

addition to this project, but the project still meets its goals of

running a 5G network and experimenting with it.

BIBLIOGRAPHY

[1] “What Is 5g: Everything You Need to Know About 5G:

5G FAQ: Qualcomm.” Wireless Technology &

Innovation, www.qualcomm.com/5g/what-is-5g.

Accessed 5 Sept. 2024.

[2] “Open AI Cellular (OAIC).” Open AI Cellular (OAIC),

www.openaicellular.org/. Accessed 3 Oct. 2024.

[3] “Enterprise Open Source and Linux.” Ubuntu,

ubuntu.com/. Accessed 5 Oct. 2024.

[4] “What Is Docker?” Docker Documentation, 10 Sept.

2024, docs.docker.com/get-started/docker-overview/.

[5] “Production-Grade Container Orchestration.” Kubernetes,

1 Oct. 2024, kubernetes.io/.

[6] Helm, helm.sh/. Accessed 5 Oct. 2024.

[7] “SRSRAN Enterprise 5G - SRS: Software Radio

Systems.” SRS, 22 June 2023, srs.io/srsran-enterprise-5g/.

[8] “Iperf - the Ultimate Speed Test Tool for TCP, UDP and

SCTPTEST the Limits of Your Network + Internet

Neutrality Test.” iPerf.Fr, iperf.fr/. Accessed 5 Oct. 2024.

[9] “Understanding Denial-of-Service Attacks: CISA.”

Cybersecurity and Infrastructure Security Agency CISA, 1

Feb. 2021, www.cisa.gov/news-

events/news/understanding-denial-service-attacks.

[10] “HPING3: Kali Linux Tools.” Kali Linux, 23 May 2024,

www.kali.org/tools/hping3/.

[11] CCI-NextG-Testbed. “CCI-NextG-Testbed/NEXRAN:

Modified Nexran Xapp from Powder That Works with

E2ap v2.00+ and O-SC Ric F-Release and Above.”

GitHub, github.com/CCI-NextG-Testbed/nexran.

Accessed 2 Oct. 2024.

[12] “Poweredge R7515 Rack Server: Dell USA.” Dell,

www.dell.com/en-us/shop/dell-poweredge-

servers/poweredge-r7515-rack-server/spd/poweredge-

r7515/pe_r7515_tm_vi_vp_sb. Accessed 5 Oct. 2024.

[13] “5G EPC (Evolved Packet Core).” TELCOMA Training

& Certifications, 3 July 2024, telcomatraining.com/5g-

epc-evolved-packet-core/.

[14] “What Is a GNB (gNodeB)?” Inseego, Inseego | United

States, inseego.com/resources/5g-glossary/what-is-gnb/.

Accessed 22 Oct. 2024.

[15] “What Is Ue?” Inseego, Inseego | Ireland,

inseego.com/ie/resources/5g-glossary/what-is-ue/.

Accessed 22 Oct. 2024.

[16] “vnStat.” VnStat - a Network Traffic Monitor for Linux

and BSD, humdi.net/vnstat/. Accessed 5 Oct. 2024.

[17] OAIC-T, openaicellular.github.io/oaic/oaic_t.html.

Accessed 1 Oct. 2024.

