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Abstract— In this research paper,  𝜺 − 𝒑𝒆𝒓𝒕𝒖𝒓𝒃𝒂𝒕𝒊𝒐𝒏 of 

diagonal elements of symmetric synaptic weight matrix, �̅̅̅�  ( with 

𝜺 > 𝟎 ) of  Hopfield  Associative  Memory (HAM)  ( resulting  in 

updated  synaptic  weight  matrix  �̂� = �̅̅̅� + 𝜺 𝑰 ) is  assumed  to  

ensure  that  the  sufficient  condition  of  convergence  theorem  is  

satisfied. It is proved that under such perturbation, stable  states 

of HAM  based  on  synaptic  weight  matrix   �̅̅̅�  are a  subset of  

those  of  HAM  based  on �̂� .  This result is generalized to prove  

that  if  �̂� = �̅̅̅� + �̅�,  ( where �̅̅̅�, �̅�  have  the  same  eigenvectors 

),  the  stable  states of HAM  based  on  �̅̅̅�  are  preserved  as  some 

of  those  of   �̂�.  It  is  proved  that  a  linear  system  of   equations  

with  the  coefficient  matrix  being  doubly  stochastic   naturally   

arises  in  expressing  the  vector  of  diagonal  elements  of  �̅̅̅�  in   

terms  of   the  eigenvalues  of  the  symmetric  matrix 𝑾.̅̅̅̅   It is 

proved that (  in  a  well  defined  sense ), if   �̅̅̅�  is  positive  definite,  

from  the  view  point  of  dynamics  of  HAM, the  threshold  vector  

can  be  assumed  to be  a  zero  vector. These results are interesting 

from  the  viewpoint  of  preservation  of  ‘interesting” dynamics  

of  HAM  under  practical  perturbation models. Based on known  

literature, such   perturbations  ensure  that  minimum  cut  in  the  

graph  associated  with  �̅̅̅�  is  same  as  that  associated  with 𝑾.̂ 

Also,  preservation  of  interesting  dynamics ( e.g. stable  

states )  under  quantization  of  synaptic  weights  is  also  

explored. 

 

Index Terms— Hopfield  Associative  Memory (HAM), Stable  

States,  Anti-Stable  States, 𝜖 −perturbation, Convergence  

Theorem 

I. INTRODUCTION 

In an effort  to  model  the  biological neural  network, McCulloch and 

Pitts proposed a  model  of  artificial  neural network.  Network of such  

neurons, called  an  Artificial Neural  Network (ANN)  was  proposed  

to  emulate  the “classification”  function. Artificial Neural Networks  

such  as  the  Single  Layer  Perceptron (SLP)  and  Multi-Layer  

Perceptron  (MLP)  were  successfully  utilized  in  many  applications.  

Based on  such  successful ANNs, Hopfield  proposed  a  model  which  

emulates  a  biological  memory. Specifically, Hopfield  Neural  

Network (HNN)  based on  the  McCulloch-Pitts  neuron  acts  as  an  

associative  memory. 

 

 
This  work was supported in  part  by  a grant  from the  Ecole  Centrale School  

of  Engineering, Mahindra  University, India.The  author  is  a  Professor  of  
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Hopfield Associative  Memory (HAM), a  homogeneous  nonlinear  

dynamical  system  was  shown  to  exhibit convergence  behavior  or  

periodic/cyclic  behavior.  The convergence  theorem  related  to  

HAM/HNN  utilizes a  quadratic  energy  function  associated  with  its  

dynamics.  For the  convergence  theorem  to  hold,  a  sufficient  

condition  was  imposed  on  the  diagonal  elements of  the  symmetric  

synaptic  weight  matrix.  Researchers routinely  assumed  that  all  

diagonal  elements  of  the  synaptic  weight  matrix  are  all  

nonnegative  for  the  HNN  to  act  as  an  associative  memory.  The 

author contemplated  over  approaches  to  ensure  that  such  a  

sufficient  condition  holds  true.  In such  an  effort,  we  are  naturally  

led  to  the  perturbation  of  the  symmetric synaptic  weight  matrix, 

�̅�  by  a  perturbation  matrix  resulting  in  a  symmetric  synaptic  

weight  matrix, �̂�  which  satisfies  the  sufficient  condition  that  all  
diagonal  elements  are  nonnegative.  There are  several ways  to  

choose  the  perturbation  matrix. This research  paper  is  an  effort  to  

relate  the  dynamics  of  HAM  based  on  �̅�  with  that  of  the  

symmetric  matrix, �̂�.  Specifically, it  is  reasoned   that  the  

“interesting/desired”  dynamics  of  HAM  is  preserved  under  

“suitable”  perturbation.  The   notions  of  “suitable perturbation”, 

“interesting  dynamics”  are  formalized  and  proof  of  preservation  

of “interesting  dynamics” is  demonstrated. 

In  summary,  the  main  contributions  of  this  research paper are 

 

(i)Preservation of  stable states of  HAM under “interesting” 

perturbation of elements of the synaptic weight matrix 𝑊.̅̅̅̅  

 

(ii)Capitalization  of freedom in choice of  eigenvalues given desired 

corners of  hypercube as  eigenvectors  and  a  specific  choice of 

diagonal elements  of  𝑊.̅̅̅̅    It  is  specifically  shown  that that  a  linear  

system  of   equations  with  the  coefficient  matrix  being  

doubly  stochastic   naturally   arises  in  expressing  the  vector  

of  diagonal  elements  of  �̅�  in   terms  of   the  eigenvalues  

of  the  symmetric  matrix  𝑊.̅̅̅̅  ( This  discovery is  a very  

general  linear  algebraic  result  not  found  in  the  literature ). 

 

(iii) Proving that  when  �̅�  is  positive  definite,  there  is  no  

loss  of  generality in choosing  the threshold  vector  to  be  zero  

for  ensuring  energy  function  to  be  a  pure  quadratic  form  

in  the  state  vector.  Based  on  result  in  [21], this  ensures  

that  stable  states  of  such a  HAM are  related  to  the cuts in 

the graph  associated  with  the  HAM. 
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This research  paper  is  organized  as  follows.  In Section II, relevant  

research  literature  is  reviewed.  In Section III,  𝜀 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  

of  synaptic  weight  matrix  is  considered  and  the  perturbation  

analysis  of  discrete  time  Hopfield  neural  network  is  investigated. 

In Section IV,  more  general  perturbation  of  synaptic  weight  matrix  

is   considered  and  the  dynamics  of  associated  HAM  is  

investigated.  The research  paper  concludes  in  Section V. 

II.   REVIEW OF RELATED RESEARCH LITERATURE 

We  now briefly  explain  the  operation  of  Hopfield  Neural  Network 

(HNN)  which  acts as  an  associative  memory (HAM).Consider  a  

set  of  N, McCulloch-Pitts  neurons  which are connected  to  one  

another by edges with associated symmetric  synaptic  weights ( i.e. 

edge  weight  from  node ‘i’  to  node  ‘j’  is  same  as  the  weight  from 

node ‘j’ to node ‘i’).  Thus, the  synaptic  weight  matrix, �̅�  is  a  

symmetric  matrix ( i.e. �̅� = �̅�𝑇 ).  The  connection  structure  of  such 

an  ANN  is  a  weighted, undirected  graph G. Each  node  of  such  a  

graph  is  associated  with a  threshold  captured  by  means  of  a  

threshold  vector, �̅�.  Since  each  of  the N  Mc-Culloch-Pitts  neurons  

assume  only { +1, -1 }  values,  the  state  vector  of  such  an  ANN  

constitutes the  symmetric  unit  hypercube, H.  The  network  of  

neurons  have  no  external  input.  The  dynamics  of  the  ANN  is  

driven  by the  initial  state  vector  of   N  neurons. Let  the  network  

state  at  time  ‘n’  be  denoted  by 

�̅� (𝑛) =  ( 𝑣1(𝑛)   𝑣2(𝑛) 𝑣3(𝑛) ⋯ 𝑣𝑀−1(𝑛) 𝑣𝑁(𝑛)   ) 𝑤𝑖𝑡ℎ 

𝑣𝑖(𝑛) =  +1  𝑜𝑟 − 1  𝑓𝑜𝑟  𝑎𝑙𝑙  1 ≤ 𝑖 ≤ 𝑁  𝑎𝑛𝑑  𝑛 ≥ 0  𝑖. 𝑒.   
𝑠𝑡𝑎𝑡𝑒  𝑣𝑒𝑐𝑡𝑜𝑟  𝑙𝑖𝑒𝑠  𝑜𝑛  𝑡ℎ𝑒  𝑢𝑛𝑖𝑡 ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒  𝐻.  
The Hopfield Neural  Network (HNN),  thus  constitutes  a 

homogeneous  nonlinear  dynamical  system [5].  Such an  ANN  

operates in  the  following  modes of  operation. 

• Serial Mode of  Operation:  The  state  of  only  one  

neuron  is  updated  at  any  given  time ‘n’ i.e. 

𝑣𝑖(𝑛 + 1) =   𝑆𝑖𝑔𝑛 { ∑ 𝑤𝑖𝑗𝑣𝑗(𝑛) −  𝑡𝑖  

𝑀

𝑗=1

}  𝑓𝑜𝑟  𝑛 ≥ 0. 

• Fully Parallel  Mode  of  Operation:  The  state  of  all  M  

neurons  is  updated  at  any  time  ‘n’  i.e. 

 

�̅� (𝑛 + 1) =   𝑆𝑖𝑔𝑛 {  �̅̅̅̅�  �̅�(𝑛) −   �̅�  }  𝑓𝑜𝑟  𝑛 ≥ 0. 
• Other  Parallel  Modes  of  Operation:  The  state  of  more  

than  one  neuron,  but  strictly less  than  M  neurons  is  

updated  at  any  time  ‘n’. 

 

In  the  state space  of  HNN,  there  are  distinguished  

states,  called  “stable  states”  and  “anti-stable  states”.  

They  are  defined  in  the  following  manner: 

 

Definition:  A  state  �̅�, lying  on  the  symmetric  unit  

hypercube  is  called  a  Stable  State  if 

�̅� = 𝑆𝑖𝑔𝑛 { �̅� �̅� − �̅� } . 
 

Definition:  A  state  �̅�, lying  on  the  symmetric  unit  

hypercube  is  called  an  Anti-Stable  State  [4]   if 

�̅� =  −  𝑆𝑖𝑔𝑛 { �̅� �̅� − �̅� } . 
 

It  is  well  known  that  the  dynamics  of  Hopfield  Neural  

Network (HNN) satisfies  the   following  Convergence  

Theorem: 

 

Theorem 1:  Consider  a  Hopfield  Neural  Network  

operating  in  the  serial, fully  parallel  modes  of  

operation 

 

(i) In  the  serial  mode  of  operation, starting  in  any  

initial  corner  of  hypercube, H ( as the state at  time ‘0’ 

),  the  HNN  always  converges  to  a  stable  state  if  all  

the  diagonal  elements  are  non-negative.   

Also 

(ii) In  the fully  parallel  mode  of  operation, starting  in  

any  initial  condition  ( lying  on, H ),  the  HNN  either  

converges  to  a  stable  state  ( if  all  the  diagonal 

elements  are  nonnegative ) or  a  cycle  of  length  atmost  

2  is  reached. 

Proof:   The  well  known  proof  is documented  in [  ], [  ]. 

 

Such  a  Theorem  enables  utilization  of  HNN  as  an  associative  

memory,  the  so  called  Hopfield  Associative  Memory ( HAM ). 

 

The  proof  of  convergence Theorem is  based  on  associating  an  

energy  function  with  the  state  vector of  the  ANN  and  reasoning  

that  it  is  non-decreasing  as  a  function  of  time.  The  proof  of  

convergence  Theorem  requires  that  all  the  diagonal  elements  of  

the  synaptic  weight  matrix �̅�  are  non-negative.  Most  researchers  

assume  that  such  a  condition always  holds  true  and  proceed  with  

analysis  of   HNN. 

This  research  paper  is  based  on  converting  a  synaptic  weight  

matrix, �̅�,  some  of  whose  diagonal  elements  are  negative  into  a  

matrix, �̂� all  of  whose  diagonal  elements  are  non-negative.  The  

notion  of  “suitable  perturbation  is  formalized  in  the  following  

sections 

This  research  paper  investigates  the  relationship between  dynamics  

of  HAM  based  on  �̅�, with  that  of  HNN  based  on  �̂� ( 

obtained by “suitable perturbation”  of  elements  of  �̅� ). 
Detailed  results  are  presented  in the  following  section.  The  results  

are  based  on  linear  algebraic  arguments. 

III. DISCRETE  TIME  HOPFIELD NEURAL NETWORK: 

PERTURBATION  ANALYSIS:  

We  now  provide  a  sufficient  condition  which  ensures that  the  

diagonal  elements  of  �̅� are  all  nonnegative. The  following  

lemma  is  documented   for  completeness.  It  is  based  on  linear  

algebraic  results  associated  with  a  symmetric  matrix.  It  is   

included  for  completeness. 

 

Lemma 1:  If  �̅�  is  a   positive  definite matrix  ( or  even  a  

positive semi-definite matrix ), then  all  its  diagonal  elements  are  

non-negative. 

 

Proof:  The  symmetric matrix  �̅�  has  the  following  spectral  

representation.i.e.   

�̅� =  ∑ 𝜇𝑖

𝑁

𝑖=1

𝑓�̅�  𝑓�̅�
𝑇  , 𝑤ℎ𝑒𝑟𝑒   

𝜇𝑖
, 𝑠  are  the  eigenvalues  and  𝑓̅

𝑖
,𝑠  are  the  corresponding  

eigenvectors  ( forming  an  orthonormal  basis ). 

 

Since, �̅�  is  positive  definite,  𝜇𝑖 ≥ 0  𝑓𝑜𝑟  𝑎𝑙𝑙 𝑖′ ′. 
Hence, 

𝑊𝑗𝑗
̅̅ ̅̅ =   ∑ 𝜇𝑖  (𝑓�̅�𝑗

)
2

, 𝑤ℎ𝑒𝑟𝑒𝑁
𝑖=1   𝑓�̅�𝑗

 𝑖𝑠  𝑡ℎ𝑒  𝑗𝑡ℎ  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡   

 of  𝑖𝑡ℎ  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟  𝑓�̅�   .   𝑇ℎ𝑢𝑠, 𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 

𝑊𝑗𝑗
̅̅ ̅̅ ≥ 0  𝑓𝑜𝑟  𝑎𝑙𝑙 𝑗′ ′. 

An alternative  way  to  prove  that  the  result  is  to  use  the  fact  

that  a  positive  definite  matrix  has  the  associated  Cholesky  

decomposition  i.e. 

�̅� =  𝐿 ̅�̅�𝑇,  where  �̅�  is  a  lower  triangular  matrix.  Hence, it  

readily  follows  that 

�̅�𝑗𝑗  =    𝐿𝑗1
2 + 𝐿𝑗2

2 + ⋯ + 𝐿𝑗𝑗
2   𝑓𝑜𝑟  1 ≤ 𝑗 ≤ 𝑁. 

Thus, 
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                             𝑊𝑗𝑗
̅̅ ̅̅ ≥ 0  𝑓𝑜𝑟  𝑎𝑙𝑙 𝑗′ ′ … … … . . 𝑄𝐸𝐷.     

Note:  It   readily  follows  that  �̅�  can  never  be  negative  definite  

if   𝑊𝑖𝑖
̅̅ ̅̅ ≥ 0  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑖. 

I )n view  of  the  above  Lemma,  if  �̅�  has  some negative  diagonal  

elements, it  cannot  be  positive  definite. It  readily  follows  that  

the  simplest  way  to  ensure  that  all  the diagonal  elements  of  �̅�  

are  converted into  non-negative  values  is  through  “𝜀 −
𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  of  diagonal  elements  of  �̅�.  We  have  the  

following   definition 

 

Definition:  Given  a  symmetric  matrix, �̅�,   

𝜀-perturbation  of  such  matrix   is  defined  as ( resulting in  a  new  

matrix  �̂� ) 

�̂� =   �̅� +  𝜖 𝐼 

( i.e.  all  the  diagonal  elements  of  symmetric  matrix  B  are  

perturbed  by  𝜖  ). 

 

In  the  following  discussion,  we  explain  the  details  of  such  𝜀-

perturbation  idea.  It  constitutes  one  possible “sutiable”  

perturbation  of   the  elements  of  �̅�.  The  concept  suitable  

perturbation  includes  the  following   two  cases:  

 

(i)Given  that  the  diagonal  elements  are  negative,  let  the  

“additive  perturbation  matrix”, �̅�  be  such  that  �̅� =  𝜖 𝐼    
𝑎𝑛𝑑  �̂� = �̅� +  �̅�. It  readily  follows  that  if  𝑓 ̅ is  an  eigenvector  

of  �̅�  corresponding  to  eigenvalue  𝜇, we  have 

�̂� 𝑓̅  =   ( �̅� + �̅� ) 𝑓̅ =  𝜇 �̅� + 𝜖 �̅� = (𝜇 + 𝜖 ) �̅�.  Thus,  we  have  

that ( 𝜇 + 𝜖  )  is  an   eigenvalue  of  �̂�  with  the  corresponding  

eigenvector  being  𝑓̅. 
(ii) The  perturbation matrix, �̅�  has  the  same  set  of  eigenvectors  

as  the  synaptic  weight  matrix, �̅�.  The  eigenvalues  of  �̅�  could  

be  different  from  those  of  �̅�.   
We  prove  in  this  research  paper  that  under  suitable  

perturbation,’interesting  dynamics” of  HAM  is  preserved.  The  

notion  of  “interesting  dynamics”  is  defined  in  the  following  

sense: 

Interesting  dynamics  of  HAM: Based  on  the  convergence  

Theorem  of   HAM,  we  consider  “interesting dynamics”  of  it  to  

be   convergence   to  stable   state  starting  in  any initial  state. 

     

We  now  consider  the  case  (i)  

Let  𝑤𝑚𝑖𝑛  be  the minimum  of  all  negative  diagonal elements of  

�̅�  𝑖. 𝑒. 
 

𝑤𝑚𝑖𝑛 =
𝑀𝑖𝑛

1 ≤ 𝑗 ≤ 𝑁 
 𝑤𝑗𝑗  . 

Let 𝜖 > | 𝑤𝑚𝑖𝑛 | .  It  readily  follows  that 

�̂� =  �̅� +  𝜖 𝐼 

is  a  symmetric  matrix  with  all  diagonal  elements  being  non-

negative. Thus,  the  HAM  based  on  such  a  synaptic  weight  

matrix  converges  to  a  stable  state  in  the  serial  mode  of  

operation. In  the  following  lemmas,  we  reason  that  the  

programmed/desired  stable  states  [1,2,3]   as  well  as  arbitrary  

stable  states  of  HAM  based  on  �̅�   are  same  as  those  of  HAM  

based  on  �̂�.   We  assume  that  the  threshold  vector  �̅� ≡ 0̅ .  

Formally,  we  have  the  following  result. 

 

Lemma 2:  Consider  the  spectral  representation  of  a  symmetric  

matrix,  �̅�. i.e.  

�̅� =  ∑ 𝜇𝑖

𝑁

𝑖=1

 �̅�𝑖  �̅�𝑖
𝑇 ,   𝑤ℎ𝑒𝑟𝑒 

 

 �̅�𝑖
′𝑠  are  the  corners  of  hypercube  ( i.e. { +1, -1 }  vectors )  that  

are  eigenvectors  of  �̅�  corresponding  to  eigenvalues,  

𝜇𝑖
, 𝑠.  Consider  𝜖 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  �̅� 𝑖. 𝑒.  𝑤𝑖𝑡ℎ  𝜖 > 0 

�̂� =  �̅� +  𝜖 𝐼 . 
The “ programmed”  stable  states  of  HAM  associated  with 

�̅� are  all  same  as  those   associated  with  �̂�   
 ( threshold  vector  �̅� ≡ 0̅  ) 

 

Proof:  From   [3], the  eigenvector  of  �̅�  corresponding  to positive  

eigenvalue  that  is  also  a  corner  of  hypercube  is  the  stable  state  

of  HAM  with  the  synaptic  weight  matrix �̅�.  Such  a  stable  state  

is  called  the  “programmed  stable  state”.  More  clearly,  since  

�̅� �̅�𝑖 =  𝜇𝑖   �̅�𝑖    
 

and  �̅�𝑖 is  a  corner  of  hypercube,  we  have  that 

            Sign ( �̅� �̅�𝑖 )  =  Sign ( 𝜇𝑖  �̅�𝑖    
) =    �̅�𝑖   𝑖𝑓  𝜇 > 0   . 

Also,   

𝑊 ̂�̅�𝑖 =   �̅� �̅�𝑖 +  𝜖  �̅�𝑖  = ( 𝜇𝑖 +  𝜖 ) �̅�𝑖  . 
Hence,  �̅�𝑖  is  also  the  eigenvector  of  𝑊 ̂corresponding  to  the  

eigenvalue  ( 𝜇𝑖 +  𝜖 ).  Thus, 

 

Sign  (𝑊 ̂�̅�𝑖) =  𝑆𝑖𝑔𝑛 ( ( 𝜇𝑖 +  𝜖 ) �̅�𝑖 ) =  �̅�𝑖  if 𝜇𝑖 > 0, 𝜖 > 0. 

Thus, we  have  the  desired   result      Q.E.D. 

 

Note:  Suppose  𝑆𝑖𝑔𝑛  ( 𝜇𝑖 +  𝜖 ) =   𝑆𝑖𝑔𝑛 (𝜇𝑖).  Then,  from  the  

above  proof,  it  readily  follows  that  the  programmed  stable,  anti-

stable  states  of  �̅�, �̂�   are  same. 

 

Note: It  readily  follows [3]  that  the  proof  argument  generalizes  

to  the  case  when �̅� ≠ 0̅, 𝑏𝑎𝑠𝑒𝑑  𝑜𝑛  𝑡ℎ𝑒  𝑟𝑒𝑠𝑢𝑙𝑡  𝑖𝑛  [3] 
 

Now, with  𝜀 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  of   𝑊 ̂,  ( with  𝜀 > 0  )  i.e. 

                                            �̂�̂ = �̅� + 𝜀 𝐼 , 

we  reason  that  any  stable  state  ( i.e.  even  the  non-programmed   

ones )  of  HAM  with   �̅�  as  synaptic  weight  matrix  is  same as  

those  of  HAM  based  on  �̂� . 
 

Lemma 3:  Every  stable  state  of  HAM  based  on  synaptic  weight  

matrix, �̅�  is  same  as  that  of  HAM  associated  with  synaptic  

weight  matrix, �̂� . 
 

Proof:  Let  �̅�  be  a  stable state  of  �̅� 𝑖. 𝑒. 
𝑆𝑖𝑔𝑛 ( �̅� �̅� ) =   𝑔 ̅ . 

Since  𝜀 > 0,  we  have  that 

𝑆𝑖𝑔𝑛( 𝑊 ̂�̅� )  =  𝑆𝑖𝑔𝑛 ( 𝑊 ̅̅ ̅̅ �̅� + 𝜀 �̅�  )  =   �̅�  

 (  𝑠𝑖𝑛𝑐𝑒  𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  �̅�  𝑏𝑦  𝜀  𝑎𝑛𝑑  𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛  𝑤𝑖𝑡ℎ 𝑊 ̅̅ ̅̅ �̅� ,
𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠  𝑡ℎ𝑒  𝑠𝑖𝑔𝑛  𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒  𝑜𝑓  𝑊 ̅̅ ̅̅ �̅� ). 

Thus, stable states  of  �̅� are  preserved  under  the  𝜀 −

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑖𝑡 ( 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔  𝑖𝑛  𝑊 ).̂.........QED 

Note:  The  above  lemma   doesnot  claim  that  the  stable  states  of        

�̅�, �̂�  are  all  same.  In fact,  we  prove  in  Lemma 4 that  if  �̂�  is  

positive  definite,  all  corners  of  hypercube  are  stable  states  of  

HAM  based  on  it.  It   resadily  follows   by  choice  of  sufficiently  

large  positive  value  of   𝜖, �̂�  can  always   be   made  positive  

definite. 

Note:   This  lemma  leads  to  the  conclusion  that  𝜀 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 

of  diagonal  elements  of  �̅�  ensures   that  the  sufficient  condition  

for  convergence  of  HAM  is  ensured  and  that  the  stable  states  are  

preserved.  This  is  a  very interesting  result. 
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Note:  For  notational  convenience,  stable/anti-stable states of  HAM  

based  on  �̅̅̅̅�/�̂�  are  called  as  the  stable/anti-stables  states  of  

�̅�/𝑊 .̂  

• We  now  focus  on  the  linear  algebraic  

properties  of the  𝜀 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  of  �̅� . 

Let  the  spectral  representation  of  �̅�  be 

�̅� =   ∑ 𝜇𝑖

𝑁

𝑖=1

𝑓̅ 𝑖  �̅�𝑖
𝑇 . 

Hence, 

𝑊 ̂ 𝑓�̅� = ( �̅̅̅̅� + 𝜀 𝐼 ) 𝑓�̅� =   �̅� 𝑓�̅� +  𝜀 𝑓�̅� =   ( 𝜇𝑖 + 𝜀 ) 𝑓�̅�  . 

• Suppose,,�̅�  𝑖𝑠  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒  𝑖. 𝑒. 𝜇𝑖 >
0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖′ ′. 

Since, 𝜀 > 0  and  the  eigenvalues of  �̂�  are  𝜇𝑖 + 𝜀  for  all  ‘i’,  �̂�    
will  be  positive  definite. 

• Suppose,  �̅�  𝑖𝑠  𝑁𝑂𝑇  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒   
𝑖. 𝑒. 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒  𝑜𝑓  �̅� ( 𝑖. 𝑒.  𝜇𝑚𝑖𝑛 ) 𝑖𝑠  𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑖. 𝑒. 

𝜇𝑚𝑖𝑛 < 0.  𝑆𝑢𝑝𝑝𝑜𝑠𝑒  𝜀 > −𝜇𝑚𝑖𝑛. 𝑇ℎ𝑒𝑛  𝜇𝑚𝑖𝑛 + 𝜀 > 0. 

Consequently,  𝜇𝑖 + 𝜀 > 0  𝑓𝑜𝑟  𝑎𝑙𝑙   ′𝑖′.  Thus,  with  such 

𝜀 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛, �̂�  𝑤𝑖𝑙𝑙  𝑏𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒. 

• 𝑇𝑟𝑎𝑐𝑒 ( �̂� )  =   𝑇𝑟𝑎𝑐𝑒 (�̅� +  𝜀 𝐼 ) = 𝑇𝑟𝑎𝑐𝑒(�̅�) +
𝜀 𝑁 . 

• Since,  the   threshold  vector, �̅� ≡ 0̅ 

 ( 𝑧𝑒𝑟𝑜  𝑣𝑒𝑐𝑡𝑜𝑟 ), 𝑡ℎ𝑒  𝑒𝑛𝑒𝑟𝑔𝑦  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  associated  

with  the  dynamics  of  HAM  based  on �̅�  is 

�̅�𝑇(𝑛) �̅� �̅�(𝑛) = 𝑇𝑟𝑎𝑐𝑒(�̅�) +  
∑ ∑ 𝑣𝑖(𝑛) 𝑤𝑖𝑗 𝑣𝑗(𝑛).

𝑁

𝑗=1

𝑁

𝑖=1

𝑖 ≠ 𝑗                                

 

Hence 

�̅�𝑇(𝑛) �̂� �̅�(𝑛) =   �̅�𝑇(𝑛)  ( �̅� +  𝜀  𝐼 ) �̅�(𝑛) 

                               =  �̅�𝑇(𝑛) �̅� �̅�(𝑛) + 𝜀 𝑁. 

Lemma  4: If  �̂�  is  positive  definite, then there  are  no  antistable  

states  in  the  dynamics  of  HAM  associated  with �̂�.  Furthermore, 

if  �̂�  is  diagonally  dominant  matrix,  all  the  corners  of   unit  

hypercube  are  stable  states. 

Proof:  Suppose,  �̅�  is  an  anti-stable  state  of  HAM  based  on  

synaptic  weight  matrix, �̂�  𝑖. 𝑒. 

�̅� =  −𝑆𝑖𝑔𝑛 ( �̂� �̅�  ). 

Hence,  it  readily  follows  that   

�̅�𝑇 �̂� �̅�  < 0.  

It  contradicts  the  fact  that  �̂�  is  a positive  definite  matrix. 

Thus,  there  are  no  anti-stable  states  associated  with  the  dynamics  

of  HAM  based  on �̂�.  

Now,  we  consider  a  diagonally  dominant  matrix  �̂�  𝑖. 𝑒.  

�̂�𝑖𝑖 >   
∑ | �̂�𝑖𝑗|

𝑁

𝑗=1

 .

𝑗 ≠ 𝑖           

 

It  readily  follows  that  by  choosing  sufficiently  large  value  of  𝜀,
�̂� =  �̅� +  𝜀  𝐼  can  be  ensured  to  be  a  diagonally  dominant  

matrix. 

Consider  a  corner  of  unit  symmetric  hypercube, �̅� . Since  

 

�̂�𝑗𝑗 >   
∑ | �̂�𝑗𝑘|

𝑁

𝑘=1

 , 𝑤𝑒 ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡

𝑘 ≠ 𝑗                                        

 

𝑆𝑖𝑔𝑛 ( �̂� �̅� ) =   �̅�  𝑓𝑜𝑟  𝑎𝑙𝑙  𝑐𝑜𝑟𝑛𝑒𝑟𝑠  𝑜𝑓 𝑢𝑛𝑖𝑡  ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒.  

Thus,  every  corner  of  unit  hypercube  is  a  stable  state.  

QED 

Note:  Every  diagonally  dominant  matrix is  a  positive  definite  

matrix. 

Note:  By  successively  increasing  the positive  value  of 𝜀, it  can  

be  ensured  that  all  diagonal  elements  of  �̂�  are  positive/non-

negative ( satisfying  the  sufficient  condition  for  the  convergence  

theorem  to  hold ), �̂�  is  positive  definite  and  even  �̂� is  a  

diagonally  dominant  matrix.  Such  𝜀 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  ensures  

“suitable”  preservation  of  stable  states. 

The  above  discussion  is  concerned  with  a  special  perturbation  

of  elements  of  �̅�.  We  are  naturally  led  to  more  general  

perturbation  of  elements  of  �̅�.  Thus,  in  the  following  section, 

we  consider  ROBUST  HOPFIELD  NEURAL  NETWORK  and  

its dynamics  under  special  perturbation  of  elements of  �̅�.  The  

perturbation  could  be  due  to  noise  corrupting  the  synaptic  

weights. 

In  the  above  discussion,  we  assumed  that  the  threshold  vector  

is  a  zero  vector  i.e. �̅� ≡ 0̅.  In  the  following  lemma,  we  reason  

that  ( in  a  well  defined  sense ), if  �̅�  is  a  positive  definite  

matrix,  there  is  no loss  of  generality  in  assuming . �̅� ≡ 0̅ . 

Lemma  5:  Let  �̅�  be  the  synaptic  weight  matrix  of  HAM with  

the  associated  threshold  vector  being  a  non-zero  vector  i.e. �̅� ≠
0̅ .  Let  �̅�  be  a  positive  definite  matrix.  Consider  associated  

HAM  with  synaptic  weight  matrix, �̂� i.e 

, �̂� = [ �̅� −�̅�
−�̅�𝑇 𝛼

]    𝑤𝑖𝑡ℎ  𝛼 > ∑ | 𝑇𝑖  |   𝑎𝑛𝑑  𝑁
𝑖=1  

threshold  vector,  �̂� ≡ 0̅. �̅�  is  a  stable  state  of  HAM  with  

synaptic  weight  matrix  �̅�  if  and  only  if  [
�̅�
1

]  is  a  stable  state  

of  HAM  with  associated  synaptic  weight  matrix �̂�. 
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Proof:  From  the  definition  of  �̂� 𝑎𝑛𝑑  𝛼,  we have  that 

                     �̂� [
�̅�
1

]  =  [�̅�  �̅� − �̅� 
1

] .  Hence, it  follows  that 

𝑆𝑖𝑔𝑛 { �̂�  [
�̅�
1

]  } = [ 𝑆𝑖𝑔𝑛 (�̅�  �̅� − �̅� ) 
1

] . 

Thus,  the  claim  holds.  There  is a  one-to-one  correspondence  

between  stable  states  of  �̅�, �̂�.     QED 

IV. ROBUST  HOPFIELD NEURAL  NETWORK: DYNAMICS 

In  this  section, we  consider  the  dynamics  of  HAM based  on  �̅�  

when  its  elements  are  subjected  to  interesting  perturbations  [6-

20].  We  consider  some  interesting  cases: 

 

CASE  (A):  All  the  elements  of  the  symmetric  matrix, �̅� are  

perturbed  by  a  common  value  i.e. 

�̂� =  �̅� + 𝜀  𝑒 ̅�̅�𝑇 , 𝑤ℎ𝑒𝑟𝑒  �̅�𝑇 = ( 1 1 … . 1 1)  
𝑖. 𝑒. 𝑟𝑜𝑤  𝑣𝑒𝑐𝑡𝑜𝑟  𝑎𝑙𝑙  𝑜𝑓  𝑤ℎ𝑜𝑠𝑒  𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  𝑎𝑟𝑒  1. 

 

NOTE: We  realized  that  (  as  discussed  in [3] ), the  synaptic  

weight  matrix, �̅�  can  be  synthesized  using  the  corners  of  

hypercube  as  the  eigenvectors  of  �̅�. When  N  is  odd ( as  

reasoned  in  [3] ),  only  one corner  of  hypercube  can  be  the  

eigenvector  of  �̅�.  But,  when  N  is  even,  the  orthonormal  basis  

of  eigenvectors  could  be  the  corners  of  hypercube.  We call  such 

an  orthonormal  basis  of  corners  of  hypercube  as  the  “Hadamard  

Basis”. 

 

Let  N  be  an  even  number.  Suppose  �̅� is  a  stable  state  of  �̅�  

with  the  number  of  ‘+1”  values ( also,  the  number  of  -1  values 

)  be  
𝑁

2
  ( as  in  the  case  of  Hadamard  basis ).  Thus,   

�̅�𝑇�̅� =   �̅�𝑇�̅� =   0. 
Hence,   

                   �̂��̅� =  �̅� �̅� +  𝜀 𝑒 ̅�̅�𝑇 𝑔 ̅ =  �̅� �̅�. 

Thus,    

            Sign ( �̂��̅� )  =   Sign (�̅� �̅� )  =  �̅� . 

Thus,  �̅�  is  a  programmed   stable  state  of   �̅�  
as  well  as �̂� . 

 

CASE  (B): We  now  consider  a  generalization  of  𝜀 −
𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛  of  elements  of  symmetric  matrix  �̅�  and  

investigate  whether  the  stable  states  of  �̅� are  preserved  under  

more  general   perturbation  (  of  elements  of  �̅� ). 
Let                �̂� = �̅� + �̅�. 
The  perturbation matrix, �̅�  has  the  same  set  of  eigenvectors  as  

the  synaptic  weight  matrix, �̅�.  The  eigenvalues  of  �̅�  could  be  

different  from  those  of  �̅�. 
For  simplicity,  we  assume  that  the  threshold  vector  is  

identically  zero  vector. 

 

Lemma 6:  Suppose  { 𝜇𝑖  }𝑖=1
𝑁 ,  { 𝛿𝑖  }𝑖=1

𝑁   are  the  eigenvalues  

of  �̅�, �̅�  respectively.   

Let  𝑆𝑖𝑔𝑛 ( 𝜇𝑖 + 𝛿𝑖  ) = 𝑆𝑖𝑔𝑛( 𝜇𝑖  ) 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑁. 
Under  such  condition,  the  stable  states  of  HAM  based  on �̅�  

are  same  as  those of  HAM  based  on  �̂�. 
 

Proof: Let  the  spectral  representation  of  �̅�  be 

�̅� =   ∑ 𝜇𝑖

𝑁

𝑖=1

𝑓̅ 𝑖  �̅�𝑖
𝑇 , 𝑤ℎ𝑒𝑟𝑒 𝑓�̅�

′𝑠   𝑎𝑟𝑒  𝑡ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠  𝑜𝑓 

symmetric  matrix, �̅�.  Let  �̅�  be  a  stable  state  of  HAM  based  on  

�̅� 𝑖. 𝑒 

𝑆𝑖𝑔𝑛 ( �̅� �̅� ) =   𝑆𝑖𝑔𝑛 ( ∑ 𝜇𝑖 𝛼𝑖  𝑓�̅�
𝑁
𝑖=1   )  𝑤ℎ𝑒𝑟𝑒  𝛼𝑖= 𝑓�̅�

𝑇�̅� . 

By  the  hypothesis (  that  the  eigenvectors  of  �̅�, �̅�  are  same),  

𝜇𝑖 + 𝛿𝑖   is an eigenvalue  of  �̂�  corresponding  to  the  eigenvector  

𝑓�̅�  (  common  between  �̅�, �̅� ). Hence, we  have  that 

𝑆𝑖𝑔𝑛 (�̂��̅� ) = 𝑆𝑖𝑔𝑛  (∑(𝜇𝑖 + 𝛿𝑖)

𝑁

𝑖=1

𝑓̅ 𝑖  �̅�𝑖
𝑇 �̅�)  

                                  = 𝑆𝑖𝑔𝑛 (∑ (𝜇𝑖 + 𝛿𝑖) 𝛼𝑖
𝑁
𝑖=1 𝑓 ̅𝑖). 

By  the  condition  that 

𝑆𝑖𝑔𝑛 ( 𝜇𝑖 + 𝛿𝑖  ) = 𝑆𝑖𝑔𝑛( 𝜇𝑖  ), 

we  have  that 

𝑆𝑖𝑔𝑛 (�̂��̅� ) = �̅�. 

 

Hence  the  stable  states  of  �̅�, �̂�  are  all  same  QED. 

 

Note: The  proof  readily  generalizes  to  the  case  where  the  

threshold  vector  is  a  non-zero  vector. 

 

Note:  If  eigenvalues of  �̅�, �̅�  are  of   the  same  sign/polarity, the  

condition  in  the  lemma  is  satisfied. 

 

Note:  If  the  set  of  eigenvalues of of  �̅�  are  permuted  versions  

of  those  of  �̅�,  the  condition  in  the  lemma  statement  is  satisfied. 

 

Note: It  readily  follows  that  𝜀 − 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 is  a  special  case  

of  the  perturbation  considered  in  CASE (B). 

 

Note: From  the  proof, it  is  clear  that  the programmed  as  well as  

non-programmed  stable  states  of  �̅� are  same  as  those  of  

�̂� (  𝑢𝑛𝑑𝑒𝑟  𝑡ℎ𝑒  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  𝑜𝑛  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 ). 
 

Note:  Since,  the   symmetric  matrices �̅�, �̅�  have  the  same  set  of  

eigenvectors,  they  commute  i.e.  �̅��̅� =  �̅�𝑊 ̅̅ ̅̅ . 

 

From the  above  discussion,  it  is   clear  that  a  suitable  

perturbation  of  �̅�  by  the  symmetric   matrix,  �̅�  will  preserve  

the  stable  states. Specifically,  some  conditions  for  perturbation  

are  discussed  in  Lemma 6. 

• Vector  of  Eigenvalues  of  �̅̅̅� :  Vector  of  Diagonal  

Elemens  of  �̅̅̅� 

 

We now  address  the  general  question  of  relationship between  

eigenvalue   vector, �̅�  of  �̅� (  i.e.  vector  of  eigenvalues of  �̅� )  

and  the  diagonal  element  vector  of  �̅�  ( i.e.  vector  whose   

elements  are  the  diagonal  elements  of  �̅�  ),  �̌� .  Let  

�̅� =   ∑ 𝜇𝑖

𝑁

𝑖=1

𝑓̅ 𝑖  �̅�𝑖
𝑇 =   �̅� �̅��̅�𝑇 ,  

𝑤ℎ𝑒𝑟𝑒 𝑓�̅�
′𝑠   𝑎𝑟𝑒  𝑡ℎ𝑒  𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠  𝑜𝑓  �̅�, �̅�  𝑖𝑠  𝑡ℎ𝑒   

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙  𝑚𝑎𝑡𝑟𝑖𝑥  𝑜𝑓  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠  𝑎𝑛𝑑  𝑃 ̅ is  the  orthogonal  

matrix  of  eigenvectors  
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NOTE:  The  following is  a  general  linear  algebraic result  

associated  with  any  symmetric  matrix  ( It  can  easily  be  

generalized  to  any  Hermitian  matrix ).   

 
Lemma 7: The  eigenvalue  vector, �̅�  and  the  diagonal  element  

vector �̌�  are  related  through  the  following  system  of  linear  

equations 

𝐹 ̅�̅� = 𝑔,̌ 
where   �̅� = �̅� 𝑜 �̅�   with  ‘o’  denoting  the  Schur  product  of  

matrices  (  �̅�  is  a  doubly  stochastic  matrix  based  on  the  

eigenvectors  of   the  symmetric  matrix  �̅� ).  

 

Proof:  Since  the  eigenvectors  of  a  symmetric  matrix  form  an  

orthonormal  basis, 

𝑓�̅�
𝑇𝑓�̅� = 1  𝑓𝑜𝑟   1 ≤ 𝑗 ≤ 𝑁  𝑎𝑛𝑑  

𝑓�̅�
𝑇𝑓�̅� = 0   𝑓𝑜𝑟  𝑎𝑙𝑙   𝑖 ≠ 𝑗. 

Also,  �̅�  can  be   expressed  as 

�̅� =   ∑ 𝜇𝑖

𝑁

𝑖=1

�̅�𝑖 , 𝑤ℎ𝑒𝑟𝑒  

�̅�𝑖
,𝑠   𝑎𝑟𝑒  𝑟𝑒𝑠𝑖𝑑𝑢𝑒  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡 ∑ �̅�𝑖 =  𝐼 ,̅𝑁

𝑖=1    the  

identity matrix.  Thus,  we  have  that 

∑   ( 𝑓𝑗𝑘
)2

𝑁

𝑗=1

=   1   𝑓𝑜𝑟  1 ≤ 𝑘 ≤ 𝑁, 𝑤ℎ𝑒𝑟𝑒  𝑓𝑗𝑘
  𝑖𝑠  𝑡ℎ𝑒 

𝑘𝑡ℎ  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑜𝑓  𝑡ℎ𝑒  𝑗𝑡ℎ 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟. 
It  is  clear  that, by  definition,  eigenvectors   of  the  symmetric  

matrix  �̅�  are column  vectors  of  the  orthogonal  matrix �̅�. Thus, 

letting 

�̅� =  �̅� 𝑜 �̅�  ( 𝑤𝑖𝑡ℎ 𝑜′ ′ 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒  𝑆𝑐ℎ𝑢𝑟  𝑝𝑟𝑜𝑑𝑢𝑐𝑡  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ), 
we  have  that  �̅�  is  a  doubly  stochastic  matrix.  

Now,  it  is  clear  that  the  given  eigenvectors,  the  system  of  

equations 

�̅� =   ∑ 𝜇𝑖

𝑁

𝑖=1

𝑓̅ 𝑖  �̅�𝑖
𝑇  

leads  to  the   following  linear  equations  relating  the  vector  of  

eigenvalues 𝛾,̅  to  the  vector  of  diagonal  elements  of  �̅� 𝑖. 𝑒. 𝑔.̌   
 

𝐹 ̅�̅� = 𝑔,̌ 
Thus,  we  have  a  linear  system  of  equations  with  the  coefficient  

matrix  being  a  doubly  stochastic  matrix                      QED 

 

Corollary:  If  the  doubly  stochastic  matrix, 𝐹,̅  is  non-singular,  

then  there  is  a  unique  solution  for  the  vector  of  eigenvalues  of 

�̅� 𝑖. 𝑒. 
 �̅̅� =  �̅�−1 𝑔,̌ 

Also,  if  �̅�  is  singular,  then  there are  infinitely  many solutions  

for  the  eigenvalue  vector �̅�. 
 

Note:  In  view  of  lemmas, 6 and  7,  given  the  eigenvalues  of  �̂�  

which  are  based  on  the  solution  of  above  system  of   linear  

equations  (  leading  to  a  desired  positive  vector  �̌� ),  for  a  given  

matrix  �̅�  with  known  eigenvalues,  we   can  readily  determine  

the eigenvalues  of  𝑅.  It  shoulde  be  kept  in  mind  that  in  the  

case  of  Lemma 6,  the  eigenvectors  of   matrices,  �̅�, �̅�  𝑎𝑛𝑑 �̂� 

are  all  same 

 

Note:  The  Lemma  7  holds  true for  any  symmetric  matrix, �̂�   

and  its  diagonal  element  vector,  �̌� ,  vector  of  eigenvalues 𝛾.̅ 
 

Note: The  above  Lemma  can  be  generalized  for  any  Hermitian  

matrix  (  whose  diagonal  elements  are  real  numbers ).  Details  

are  avoided   for  brevity. 

 

Note:  In  the  spirit  of   above  Lemma,  given  the  eigenvectors  of  

a  symmetric  matrix,  linear  system  of   equations  can  naturally  be  

associated  with  expressing  any  vector  of   N  elements  of  W  ( for  

instance  the  trailing  diagonal  elements )  in  terms  of  the  

eigenvalues. 

 

• ZERO-FORCING  EIGENVALUE  VECTOR: 

From  the  convergence  Theorem, it  is  sufficient  for  the  diagonal  

elements  of  the  synaptic  weight  matrix  to  be  non-negative.  

Thus,  for  convergence  Theorem  to  hold, �̌�  can  be  a  zero  

vector.  Hence, the  system  of  linear  equations  reduce  to 

𝐹 ̅�̅� = 0̅. 
Thus,  for  zero-forcing  eigenvector  solution,  we  are  interested  in  

the  vectors  in  the  null  space  of  𝐹.̅   𝐼𝑓  �̅�  is  non-singular,  the  

zero  vector  is  the  only  vector  in  the  null  space of  𝐹 .̅̅ ̅   Also,  

there  are  infinitely  many  solutions  for  the  eigenvalue  vector  if   

𝐹 ̅ is  singular. 

To  illustrate  the  Lemma 7  and  the  above  results,  we  provide  an  

example: 

 

Example:  Consider   the  eigenvectors  of  �̅̅̅�  which  constitute  a  

normalized Hadamard  basis ( normalized  columns  of  a  

Hadamard  matrix )  i.e.  the  orthogonal  matrix, �̅� of  

eigenvectors ( arising  in  the  spectral  representation of 𝑊).̅̅ ̅̅ ̅ 

Hence, it  readily  follows  that  the  doubly stochastic  

matrix, �̅�  is  given  by 

                                     �̅� =  �̅� 𝑜 �̅�𝑇 =
1

𝑁
 �̅� �̅�   𝑇 , 𝑤ℎ𝑒𝑟𝑒 

�̅� is  a  column  vector  of  ‘ones’  and  ‘o’  denotes  the  Schur  

product.  Thus, �̅� is  a  doubly  stochastic  singular  matrix  of   rank 

one.  Thus,  given  a  non-negative  diagonal  element  vector,  𝑔,̌ 
( sum  of  all  the  element  of   the  non-negative  diagonal  vector  is  

the   trace  of  the  matrix, �̅�  ) one  possible  solution  for  �̅�  is 

�̅� =  
1

𝑁
  𝑇𝑟𝑎𝑐𝑒 ( �̅̅̅̅� ) 𝑒 ̅, 

where �̅�  is  a  vector  all  ones.  Infinitely  many  solutions   for �̅� are  

generated using  the  vectors  in  the  null  space  of  the  matrix �̅�.  

They  are   given  by 

�̅� =  
1

𝑁
  𝑇𝑟𝑎𝑐𝑒 ( �̅̅̅̅� ) 𝑒 ̅  +  𝛼 𝐽,̅ 𝑤ℎ𝑒𝑟𝑒  

𝐽 ̅lies  in  the  null  space  of  doubly  stochastic  matrix  𝐹 ̅. 
 

We  now  investigate  the  operations  on  symmetric  matrices  that  

preserve  the  stable/anti-stable  states: 

 

• Algebraic  Structure  of  Symmetric  Matrices  with  

same  programmed ( desired )/ Non-programmed  

Stable  States: 

The  following  Lemma sheds  light  on operations on  symmetric  

matrices  which  preserve  the  stable/anti-stable  states. 

 

Lemma  8:   The  following  inferences  hold  true  (i)  If  𝑓 ̅ is   a  

stable  state  of  symmetric  matrices, �̅�, 𝐵,̅  then  𝑓 ̅is  a  stable state  

of  �̅� + 𝐵,̅ 
(ii)  If  𝑓 ̅ is   an  anti-stable  state  of  symmetric  matrices, �̅�, 𝐵,̅  then  

𝑓 ̅is  an anti-stable state  of  �̅� + 𝐵,̅ 
(iii)  If 𝑓1̅, 𝑓2̅  are  cycle  states  of  length  2  of symmetric  matrices, 

�̅�, 𝐵,̅  then  𝑓1̅, 𝑓2̅ are  cycle  states  of  length  2  of  of  �̅� + 𝐵,̅ 
(iv)  Suppose  𝑓 ̅is  a  programmed/desired  stable  state  of  �̅�.  It is  

also  a  programmed/desired  stable or  anti-stable  state  of  �̅� + �̅�  if  

and  only  if ,  it  is  a  programmed  stable or  anti-stable  state of  

�̅� ( 𝑓 ̅can  be  an  eigenvector  of  𝐵  ̅̅̅̅  corresponding  to zero  

eigenvalue  i.e.  𝑓 ̅ lies  in  null  space  of  𝐵 ).̅̅ ̅̅ ̅ 
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Proof:  

(i)  𝑓 ̅ is   a  stable  state  of  symmetric  matrices, �̅�, �̅� 𝑖. 𝑒. 

𝑆𝑖𝑔𝑛( 𝐴 ̅𝑓 ̅) =   𝑓 ̅ 𝑎𝑛𝑑   𝑆𝑖𝑔𝑛( 𝐵 ̅𝑓 ̅) =   𝑓 .̅̅ ̅ 

  Let  𝐴 ̅𝑓̅ =   ℎ ̅  𝑎𝑛𝑑  �̅�𝑓 ̅ =   �̅�.  Hence,  we  have  that 

Sign ( (�̅� + �̅�) 𝑓 ̅)  =  Sign (ℎ̅ + �̅� )  =  𝑓.̅ 

 

(ii)  Similar  reasoning  as  in  (i)  gives  the  desired  result 

 

(iii) Let   𝑓1̅, 𝑓2̅  are  cycle  states  of  length  2  of symmetric  

matrices, �̅�, �̅� 𝑖. 𝑒. 
 

𝑆𝑖𝑔𝑛 ( �̅�𝑓1̅ ) =   𝑓2̅   and   𝑆𝑖𝑔𝑛 ( �̅�𝑓2̅ ) =   𝑓1̅ 

 

𝑆𝑖𝑔𝑛 ( �̅�𝑓1̅ ) =   𝑓2̅   and   𝑆𝑖𝑔𝑛 ( �̅�𝑓2̅ ) =   𝑓1̅. 

 

As  in  (i)  above, 

 

𝑆𝑖𝑔𝑛 ( ( �̅� + 𝐵 ) 𝑓1̅) =   𝑆𝑖𝑔𝑛(  �̅�𝑓1̅ + �̅�𝑓1̅ ) =    𝑓2̅    𝑎𝑛𝑑   

 

𝑆𝑖𝑔𝑛 ( ( �̅� + 𝐵 ) 𝑓2̅)  =  𝑓1̅    i.e.  cycles of  length  2  are  also  

preserved  under  the  addition  of   two  associated  symmetric  

matrices. 

(iv)  Suppose  𝑓 ̅ is  a  programmed/desired  stable  state  of  �̅� 𝑖. 𝑒. 
           �̅�𝑓̅  =   𝜇𝑓̅  𝑤𝑖𝑡ℎ  𝜇 > 0   𝑎𝑛𝑑  𝑆𝑖𝑔𝑛 (  �̅�𝑓 ̅)  =   𝑓̅  . 
Now  suppose  𝑓 ̅ is  also a  programmed/desired  stable  state  of   

�̅� +  �̅�   𝑖. 𝑒. 
( �̅� + �̅� ) 𝑓̅ = 𝜃𝑓̅  𝑤𝑖𝑡ℎ  𝜃 > 0  𝑖. 𝑒.  𝑆𝑖𝑔𝑛 ( ( �̅� + �̅� ) 𝑓 ̅) =   𝑓.̅ 

Hence, it  readily  follows  that 

                                    �̅�𝑓̅ =   ( 𝜃 − 𝜇 )𝑓 ̅. 

Thus, 𝑓 ̅ is  a  programmed/ desired  stable/anti-stable  state  of  �̅� . 
 

Similar  reasoning  can be  applied  to  programmed/desired  anti-

stable  state  of   �̅� ……………………………..QED 

• Graph  Theoretic  Significance  of  Perturbation Models: 

In  [21], it is  proved  that  the  global  optimum  stable   state in  the  

Hopfield  Neural  Network  corresponds  to  the  minimum  cut  in  

the  graph  associated  with  HAM.  In  view  of  the  results  in 

Section III, Section IV,  we  infer   that   the  suitable  perturbations  

of  elements  of  �̅�,  preserve  the  minimum  cut  in  the  associated   

graphs. 

V. DISCRETE  TIME  HOPFIELD  NEURAL  NETWORK: 

QUANTIZATION  OF  SYNAPTIC WEIGHTS: 

In many  practical  implimentations of  discrete  time  Hopfield  

neural   network ( hardware  and   software  implimentations ), it  is  

necessary  to  quantize  the  elements  of  synaptic  weight  matrix so  

that  the  elements  are   integers (e.g. quantization to  8  bits ). Under  

such  perturbation  of  elements  of  W,  it  is necessary  to 

investigation  of  preservation  of  interesting  dynamics  of  HAM ( 

e.g.  the  stable  states ).  As  discussed  in earlier  sections,  we  are  

led  to  the  perturbation  of  only  the  eigenvalues: 

• The   results  in  earlier  sections  readily  apply  for  

quantization  of  elements  of   W  based  on  perturbation 

of   only  the  eigenvalues. 

CLAIM: We  now  consider  “sign  preserving” perturbation  of  

eigenvalues  of  W  i.e.  When  an  eigenvalue  of  W  is  perturbed  

so  that  its  “sign”/”polarity”  remains  invariant  (i.e.  

positive/negative  eigenvalue   remains  positive/negative ). Under  

such  condition   it   readily  follows  that  “programmed/desired”  

stable/anti-stable  states  are  preserved  after  quantization. Also,  

when  some   eigenvalues  are very small ( in  absolute  value ), it  is  

possible  to  ZERO  them  out  i.e.  the   dimension  of  null  space  of  

W   is  increased.  Based  on  the  results  of  the  author  in  [3],  

detailed  results  can  be  derived. Details are  avoided  for brevity. W 

We  now  derive  an  interesting  sufficient  condition  which  ensures  

that  the  stable  states  are  preserved  under  perturbation.  Suppose  

the  perturbation  matrix  is  R  i.e. �̃� = �̅� + �̅�. Let  𝑓 ̅ be  a  stable  

state  of  �̅�  𝑎𝑛𝑑   𝑙𝑒𝑡   𝑆𝑖𝑔𝑛 ( �̅�𝑓 ̅) =   𝑆𝑖𝑔𝑛 (�̅�𝑓 ̅).  Then  it  

readily  follows   that  𝑓 ̅ is  also  a  stable  state  of  �̃�. 

VI. CONCLUSIONS 

In this  research  paper,  it  is  shown  that  the  simplest  perturbation  

of  diagonal  elements  of  synaptic  weight  matrix  of  HAM  ensures  

that  the  convergence  theorem  is  satisfied  and at  the  same  time  

stables  states  of  HAM  dynamics  are  preserved.  It is  formally  

proved  that  even  under  more  general  perturbation  model,  the  

stable  states of  associated  HAM  are  preserved.  It  is  proved  that  

given  a  symmetric  matrix   �̅�,  its  vector  of  eigenvalues  and  its 

vector  of  diagonal  elements  of  �̅�  are  related  through  a  linear  

system  of   equations  with  the  coefficient  matrix  being  a  doubly  

stochastic  matrix. 
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