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Abstract— Knowledge is key factor. Sometimes knowledge 
available to the system for reasoning is incomplete. For non-
monotonic reasoning, the knowledge available to the systems is 
incomplete. The bird can fly is not known. Fuzzy logic is able to 
deal with incomplete information. In this paper, fuzzy non-
monotonic logic is studied. Fuzzy non-monotonic reasoning is 
studied. Fuzzy granular non-monotonic reasoning is studied. 
Fuzzy truth maintenance system (FTMS) is studied for fuzzy non-
monotonic reasoning. Some examples are discussed for fuzzy non-
monotonic reasoning. 
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I. INTRODUCTION 

Sometimes AI has to deal with incomplete knowledge.   If 
knowledge base is incomplete then inference is also incomplete. 
If knowledge is added then the inference is changes. Some 
knowledge is sufficient for reasoning. Sometimes knowledge is 
not sufficient for complete reasoning. Such situations fall under 
non-monotonic [10]. There are many theories to deal with    
incomplete information like Probability, Dempster- Shaffer 
theory, Possibility, Plausibility, non-monotonic etc. Zadeh [11] 
fuzzy logic is based on belief rather than probable (likelihood) 

 
In non-monotonic reasoning, some additional information is 

to be added the reasoning will be changed [4]. 
 

“if x is not known then conclude y”  
“if x is con not be proved in some amount of time, then 

conclude y” 
 
x is bird ^ x has wings Λ x is known to fly  → x can fly 
x is bird ^ x has wings Λ x is not known to fly  → x can fly 
Ozzie can fly? 
It is imprecise. 
 Ozzie is bird Λ x has wings Λ x is not known to fly  → x 

can’t fly 
 
 In the above situations, though added some knowledge, it not 

possible to reasoning with non-monotonic logic. 
Zadeh [12] propose Z-Number or Zadeh – Number as Z= (A, 

B) for the proposition of the type “x is P” 

Where A is likely support the knowledge and B is unlikely 
support the knowledge.  

Here is first case support the inference and in second case not 
support the information. 

x is bird Λ x has wings Λ x is likely to fly  → x can fly 
x is bird ^ x has wings ^ x is unlikely to fly  → x can’t fly 
The fuzzy non-monotonic reasoning will bring imprecise 

knowledge in to precise knowledge. 
In the following, fuzzy non-monotonic logic is discussed for 

incomplete knowledge of non-monotonic reasoning. 

II. FUZZY LOGIC 

The possibility set may be defined for the proposition of the type 
“x is P” as 
 
πP(x)→[0,1] 
πP(x)=max{ µP(xi) }, xєX 
 
µP(x)= µP(x1)/x1+ µP(x2)/x2+…+ µP(xn)/xn  
 µbird(x)= µbird(x1)/x1+ µbird(x2)/x2+…+ µbird(xn)/xn  
  
µbird(x)= µbird(x1)/x1+ µbird(x2)/x2+…+ µbird(xn)/xn  
µbird(x)= 0.1/Penguin + 0.3/Hen+0.5/Cock + 0.6/Parrot + 
0.8/eagle + 1.0/flamingos  

 
 Let  P and Q be the  fuzzy sets, and the operations on fuzzy 

sets are given below [10]   
 
PVQ=max(µP(x) , µQ(x)}         Disjunction 
PΛQ=min(µP(x) , µQ(x)}         Conjunction 
P′=1- µP(x)                                Negation 
 PxQ=min { µP(x) , µQ(x)}        Relation 

    P o Q==min{µP(x), µQ(x, x)}    Composition 
 
The fuzzy propositions may contain quantifiers like 

“very”, “more or less” . These fuzzy quantifiers may be 
eliminated as 
µvery(x) =µP(x) ²                         Concentration 
µmore or less(x) = µP(x) 0.5              Diffusion  
 

 The Zadeh [11] fuzzy  condition inference s given by 
 
if  x is  x is P1 and P2 …. X is Pn then Q   = 
 min 1, (1-min(µP1(x), µP2(x),  …,  µPn(x))   +µQ(x)}    



      
The Mamdani  [5] fuzzy  condition inference s given by 
if  x is  x is P1 and P2 …. X is Pn then Q   = 
 min {1, (1-min(µP1(x), µP2(x),  …,  µPn(x))   +µQ(x)}         
 
The Reddy  fuzzy  condition inference s given by 
if  x is  x is P1 and P2 …. X is Pn then Q   = 
 min(µP1(x), µP2(x),  …,  µPn(x))           

 
 Quasi-fuzzy set 

A quasi-fuzzy set is defined for the proposition “ x is P” as  
 
µP(x)→(0, 1) 
 

III. FUUZY NON-MONOTONIC LOGIC 
 

  Zadeh [10] is defined the Z-Number  {A,B] for the 
proposition of the type “x is P”, where A support the P and B 
not support the P .  

 
 The fuzzy non-monotonic  set may defined with two fold 

membership function using likely  and unlikely  . 
 
Definition: Given some Universe of discourse X, the 

proposition “ x is P”  is  defined as  its two fold fuzzy 
membership function as 

 
µP(x) = {µP

likely  (x), µP
unlikely  (x)} 

                      or 
P = {µP

likely(x), µP
unlikely(x)} 

Where P is Generalized fuzzy set and x Є X , 
 
0 <= µP

likely(x) <=1 and, 0 <= µP
unlikely (x) <=1 

P  =  { µP
likely (x 1)/x1     + … +   µP

likely (x n)/xn, 
µP

unlikely (x 1)/x1     + … +    µP
likely (x n)/xn,  xi  Є X, “+” is union 

  
For example  ‘ x  will fly” , fly  may be given  as 
 

fly = {µfly
likely(x), µfly

unlikely (x)} 
={0.1/peacock + .3/hen+0.5/cock+0.6/parrat+0.9/eagle,  
0.9/peacock + .8/hen+0.7/cock+0.5/parrat+0.1/eagle]  

IV. EXTENTION OF  Z-FUZZY LOGIC TO  FUZZY NIN-MONOTONIC 

LOGIC 

Since formation of the fuzzy non-monotonic logic  is  
simply  two fold fuzzy logic.  Zadeh fuzzy Z-fuzzy set  is 
extended to  fuzzy non-monotonic logic . 
 µP(x) = {µP

likely(x), µP
unlikely(x) } 

 
Suppose P and Q  are fuzzy non-monotonic sets.  The 

operations on fuzzy sets are given below for two fold  fuzzy 
sets. 
 
Negation 
P′= {1- µP

likely(x), 1- µP
unlikely(x)     }/x 

 
Disjunction 
PVQ={ max(µP

likely (x) , µP
likely (y)), max(µQ

unlikely (x) , µQ
unlikely 

(y))}(x,y) 

 
Conjunction 

PΛQ={ min(µP
likely (x) ,µP

likely (y)), min(µQ
unlikely (x) , µQ

unlikely 

(y)) }/(x,y) 
 
Implication 

Zadeh fuzzy conditional inference  
P→Q= {min(1,  1-  µP

likely (x) +  µQ
likely (y) , min ( 1, 1- µP

unlikely  

(x) + µQ
unlikely (y)}(x,y)   

 
Mamdani  fuzzy conditional inference  
P→Q= {min( µP

likely(x) ,  µQ
likely(y) , min ( µP

unlikely (x) , 
µQ

unlikely (y)}(x,y)   
 
Reddy fuzzy conditional inference  
P→Q= {min ( µP

likely (x) , µP
unlikely (y)}(x,x)   

 
  Composition 
P o R = {minx ( µP

likely (x), µP
likely  (x) ), minx( µR

unlikely (x), 
µR

unlikely (x) )}/y 
 
              
The fuzzy propositions may contain quantifiers like “very”, 
“more or less” . These fuzzy quantifiers may be eliminated as 
 
Concentration 

“x is very P             
µvery P(x) = { µP

likely  (x)2, µP
unlikely  (x)µP(x)2 } 

 

Diffusion  
“x is more or less P”   
  
µmore or less P(x) = ( µP

likely  (x)1/2, µP
unlikely  (x)µP(x)0.5 

 
For instance, consider logical operations on P and Q 
 
P = {  0.8/x1 + 0.9/x2 + 0.7/x3 + 0.6/x4 +0.5/x5 ,                                                                        
0.4/x1 + 0.3/x2 + 0.4/x3 + 0.7/x4 +0.6/x5}  
 
Q = {  0.9/x1 + 0.7/x2 + 0.8/x3 + 0..5/x4 +0.6/x5 ,                                                                      
  0.4/x1 + 0.5/x2 + 0.6/x3 + 0.5/x4 +0.7/x5}  
 
P V Q = {  0.9/x1 + 0.9/x2 + 0.8/x3 + 0.6/x4 +0.6/x5 ,                                                                        
0.4/x1 + 0.5/x2 + 0.6/x3 + 0.7/x4 +0.7/x5}  
 
P Λ Q = {  0.8/x1 + 0.7/x2 + 0.7/x3 + 0.5/x4 +0.5/x5 ,                                                                       
 0.4/x1 + 0.3/x2 + 0.4/x3 + 0.5/x4 +0.6/x5}  
 
  P′ =  not P= {  0.2/x1 + 0.1/x2 + 0.3/x3 + 0.4/x4 +0.5/x5 ,    
                            0.6/x1 + 0.7/x2 + 0.6/x3 + 0.3/x4 +0.4/x5}                                                                               
 
P→ Q =  {  1/x1 + 0.8/x2 + /x3 + 0.9/x4 +1/x5 ,    
                            1/x1 + 1/x2 + 1/x3 + 0.8/x4 +1/x5} 
P o Q = {  0.8/x1 + 0.7/x2 + 0.7/x3 + 0.5/x4 +0.5/x5 ,                                                                        
0.4/x1 + 0.3/x2 + 0.4/x3 + 0.5/x4 +0.6/x5}                            
  
µvery P(x) = { µP

likely(x)2, µP
unlikely(x)µP(x)2 }                            

 = {  0.64/x1 + 0.81/x2 + 0.49/x3 + 0.36/x4 +0.25/x5 ,  
                         0.16/x1 + 0.09/x2 + 0.16/x3 + 0.49/x4 +0.36/x5                                                                                  
 



µmore or less P(x) = ( µL
ikely (x)1/2, µU

nlikely (x)µP(x)1/2 }   
  ={  0.89/x1 + 0.95/x2 + 0.84/x3 + 0.77/x4 +0.70/x5 ,                                                                        
0.63/x1 + 0.55/x2 + 0.63/x3 + 0.81/x4 +0.77/x5}  
 

 quasi-fuzzy non-monotonic set is defined as  
 
µP

 (x) = {µP
likely  (x), µP

unlikely  (x)} 
µP

 (x)→(0, 1) 
 
Consider the fuzzy non-monotonic inference  
 
 “x is bird Λ x is known to fly then x can fly” 
 
 µbird(x)  = {µbird

likely  (x), µbird
unlikely  (x)} 

 
µbird(x)= { 0.1/Penguin + 0.3/Hen+0.5/Cock + 0.6/Parrot + 
0.8/eagle + 1.0/flamingos , 0.9/Penguin + 0.7/Hen+0.6/Cock + 
0.4/Parrot + 0.2/eagle + 0.0/flamingos } 
 
µknown

 (x)=1 
  
µbird(x)=  { 0.1/Penguin + 0.3/Hen+0.5/Cock + 0.6/Parrot + 
0.8/eagle + 1.0/flamingos , 0.9/Penguin + 0.7/Hen+0.6/Cock + 
0.4/Parrot + 0.2/eagle + 0.0/flamingos } 

 
“x is bird Λ x is known to fly then x can fly” is gen by  
 
µfly(x)= µbird(x) ^ µknown(x)= 
 µfly(x)= { 0.1/Penguin + 0.3/Hen+0.5/Cock + 0.6/Parrot + 
0.8/eagle + 1.0/flamingos , 0.9/Penguin + 0.7/Hen+0.6/Cock + 
0.4/Parrot + 0.2/eagle + 0.0/flamingos } Λ { 1.0/Penguin + 
01.0/Hen+1.0/Cock + 1.0/Parrot + 01.0/eagle + 1.0/flamingos , 
1.0/Penguin + 1.0/Hen+1.0/Cock + 1.0/Parrot + 01.0/eagle + 
1.0/flamingos } 
 
=  { 0.1/Penguin + 0.3/Hen+0.5/Cock + 0.6/Parrot + 0.8/eagle + 
1.0/flamingos , 0.9/Penguin + 0.7/Hen+0.6/Cock + 0.4/Parrot + 
0.2/eagle + 0.0/flamingos } 
 
“x is bird Λ x is not known to fly then x can fly” is gen by  
 
µfly(x)= µbird(x) Λ µnot known(x) = 
 { 0.1/Penguin + 0.3/Hen+0.5/Cock + 0.6/Parrot + 0.8/eagle + 
1.0/flamingos , 0.9/Penguin + 0.7/Hen+0.6/Cock + 0.4/Parrot + 
0.2/eagle + 0.0/flamingos } ^ { 0.0/Penguin + 0.0/Hen+0.0/Cock 
+ 0.0/Parrot + 0.0/eagle + 0.0/flamingos , 0.0/Penguin + 
0.0/Hen+0.0/Cock + 0.0/Parrot + 0.0/eagle + 0.0/flamingos } 
= { 0.0/Penguin + 0.0/Hen+0.0/Cock + 0.0/Parrot + 0.0/eagle + 
0.0/flamingos , 0.0/Penguin + 0.0/Hen+0.0/Cock + 0.0/Parrot + 
0.0/eagle + 0.0/flamingos } 
 
  

V. FUZZY GRANULAR NON-MOTONIC LOGIC 

REASONING 

 
Zadeh[13] defined fuzzy granularity  for  the proposition  

of  type “ x is A is λ”  where λ is granular variable likely,  
unlikely, very likely not very likely, more or less likely, etc. 

  

For instance, the inference for  “x is bird is not very likely ” 
is given as 

1- µbird(x) 2 
 
Fuzzy granular non-monotonic position  “x is P is  not very 

likely ” is given by 
{ 1-µP 

likely   (x)2 , 1-µP unlikely(x)2}   
 

The g fuzzy granular non-monotonic position  “x is P is  
not very unlikely ” is given by 
 
{ µP 

likely   (x) , µP unlikely   (x)}   
 
Granular  variables may be  apply on respective   functions 
For instance “x is young is likely ” is given as 
P ={ µ young 

likely   (x) , µ young unlikely   (x)}   
 
The fuzzy granular  vales  may be applied on respective 

fuzzy membership functions. 
“x is P is very likely ” is given as 

 
{ µ very P 

likely   (x) , µ P unlikely   (x)}   
“x is P is more  or less unlikely ” is given as 

 
{ µ P 

likely(x) , µ more or less P   unlikely(x)}   
For instance, “Ozzie  is bird is very likely ” is given as 

 
{ µbird

likely   (Ozzie) , µbid unlikely   (Ozzie)} 
 
“Ozzie  is bird is more or less unlikely ” is given as 
P{ µ bird 

likely   (Ozzie) , µbird unlikely   (Ozzie)0.5} 
  

VI. FUZZY TRUTH MAITANACE SYSTEM 

  
 In the truth maintenance system (TMS) for proposition  is 

give by 
 
x is bird Λ x has wings ^ x is known to fly  → x can fly 
1. x is known to fly 
2. x is not known to fly 
3. x can fly 
4. x can’t fly 

 
IN=input of belief 
OUT=output of belief 
 
 
IN   OUT 
x is known to fly  x can fly 
x is not known to fly             x can fly 
x is not known to fly             x can fly 
 

 For instance, Ozzie is bird 
 

IN   OUT 
Ozzie  is known to fly  Ozzie can fly 
Ozzie is not known to fly             Ozzie  can’t fly 
Ozzie is not known to fly             Ozzie can fly 

 



The fuzzy truth maintenance systems (FTMS) will bring the 
imprecise proposition in to precise proposition. 

In the fuzzy truth maintenance system (FTMS) for 
proposition  is give by 

 
x is bird Λ x has wings Λ x is known to fly  → x can fly 

1. x is known to fly 
2. x can fly 
3. x can’t fly 
 
IN=input of likely, unlikely 
OUT=output is belief 
 
IN   OUT 
x is no likely to fly  x can fly 
x is  known  unlikely to fly             x can't fly 

 
For instance, Ozzie is bird 
 

IN   OUT 
IN   OUT 
 
Ozzie is known likely to fly  Ozzie can fly 
Ozzie  is  known  unlikely to fly             x can’t fly 
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