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Abstract—The success of deep learning methods has led to the development of several 

applications for the automated identification of plant diseases and pest attacks. Nevertheless, 

these programs frequently experience overfitting, and when applied to test datasets from 

unfamiliar contexts, the diagnostic performance is significantly reduced. In this work, we 

present traditional CycleGAN, a unique image-to-image translation system with an attention 

mechanism of its own. CycleGAN is a data augmentation technology that improves the 

effectiveness of plant pest diagnosis by transforming a limited number of pest-damaged 

images into a broad variety of pest-lesioned images. In our work, CycleGAN outperformed 

other models in generating synthetic images of Sawfly pests. On the other hand, the Copy-

Paste-Blend (CPB) approach has proven effective in seamlessly embedding pest masks into 

external leaf images. This technique blends pest masks at various scales with leaf 

backgrounds, resulting in synthetic images that appear more natural and realistic. 

 

 

Index Terms—image-to-image translation, plant pest diagnosis, data augmentation, 

generative adversarial network, CycleGAN, Copy-Paste-Blend (CPB). 
 

 

1. Introduction : 

 

According to global development data, building healthy, sustainable, and inclusive food systems 

is crucial for reaching development goals worldwide. Agricultural growth is key to reducing 

poverty, securing food supplies, and feeding an anticipated population of 10 billion by 2050. Yet, 

various challenges threaten this progress, including disruptions from COVID-19, climate change, 

extreme weather, pests, conflicts, and surging food prices. These issues are worsening food 

insecurity and poverty, derailing efforts to end global hunger by 2030, and reversing key 

development achievements. According to the Food and Agriculture Organization (FAO), 20–40% 

of global crop yields are lost annually due to pests. Plant diseases alone cause $220 billion in 

economic losses each year, while invasive insects account for an additional $70 billion in damages 

worldwide. Early and accurate pest detection can prevent crop loss and improve agricultural 

productivity. 
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Plant pest surveillance is vital for the agricultural and biosecurity systems in Australia and New 

Zealand. It involves systematically checking for plant pests, which include harmful invertebrates 

and pathogens that can significantly impact food production, security, and ecosystems, leading to 

annual losses of 20–40%. Surveillance activities provide several key benefits: Early detection; 

identifying pests before they establish allows for effective eradication or management strategies; 

market access; surveillance data supports negotiations for domestic and international market 

access, with pest-free evidence reassuring importing countries; extent of incursions; delimiting 

surveillance helps determine the spread of newly introduced pests; monitoring levels; ongoing 

monitoring of existing pests is crucial for management and control. Deep learning plays a vital 

role in the early detection of plant pests. Deep learning contributes in several ways to early pest 

detection according to [13] and [14]: image recognition, data analysis, predictive modeling, 

automated monitoring, sensor data, integration with IoT, and many more. High-performance deep 

learning models, such as deep neural networks, require large amounts of high-quality data to 

achieve accuracy and robustness. Here, deep learning models like pest (object) detection models 

face challenges due to the scarcity of data in the agricultural pest dataset. These algorithms demand 

significant computing resources for model training and inference, especially when dealing with 

complex environments or numerous object classes. Accurate object detection requires detailed 

annotations (e.g., bounding boxes, class labels), which can be labor-intensive and expensive to 

produce, particularly for specific pest species or plant diseases.  

 

In this regard, data augmentation is a vital tool to handle the data scarcity. According to [12], Data 

augmentation involves artificially creating new data from existing data to improve machine 

learning model training. Traditional data augmentation techniques, like cropping, flipping, and 

scaling, introduce only limited variation to datasets. Overfitting remains a significant issue, as 

these transformations don’t introduce new object appearances. GAN-based techniques generate 

realistic synthetic images that increase both dataset size and diversity without requiring extensive 

manual labeling [3], [4], [5]. In this paper, a comparative review of different GAN-based 

augmentation techniques for pest detection has been delivered. This review will help to understand 

the performance of different GAN-based data augmentation models on different datasets of plant-

based pest images in producing quality images.  

 

2. Background and Related Work: 

 

The Generative Adversarial Network (GAN), introduced by Ian Goodfellow et al. in 2014 [1] , is 

a type of deep learning framework that consists of two neural networks competing against each 

other in a game-like setting. Generator takes in random noise (typically a vector of latent variables) 

and generates synthetic data that mimics the real data distribution. The discriminator acts as a 

classifier, distinguishing between real data (from the actual dataset) and fake data (produced by 

the generator). The networks are trained simultaneously through a game-theoretic approach. The 

objective is for the generator to generate data so realistic that the discriminator can no longer 

reliably tell real from fake. This innovative architecture brought forth the concept of adversarial 

learning, which has since been broadly adopted and expanded across various domains, such as 

computer vision, medical imaging, and agriculture. 
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In the field of data augmentation, numerous GAN architectures have emerged, each with its own 

unique strengths and characteristics. In this list, the first name that comes is Deep Convolutional 

Generative Adversarial Networks (DCGANs) [2], a type of generative model that leverages deep 

convolutional neural networks (CNNs) to generate high-quality images. Introduced by Alec 

Radford et al. in 2015, DCGANs improve upon traditional GANs by replacing fully connected 

layers with convolutional layers, enabling the model to capture spatial hierarchies in images. This 

architecture typically includes techniques such as batch normalization and the use of ReLU and 

Leaky ReLU activation functions to stabilize training and enhance the quality of generated 

samples. DCGANs have found applications in various fields, including image synthesis, data 

augmentation, and unsupervised representation learning, making them a foundational model in the 

generative modeling landscape. Karam et al. applied DCGAN with the CPB (Copy-Paste-Blend) 

method [3] to develop their semi-automated data augmentation tool designed to aid in the detection 

of agricultural pests, specifically whiteflies. Notably, the use of GANs to enhance object diversity 

resulted in improved recall and precision metrics for lightweight detection models, such as YOLO 

and PestNet. Human reviewers assessed the realism of the generated data with varying outcomes, 

indicating that the tool is particularly effective in low-resolution contexts. CycleGAN is employed 

to enhance dataset diversity by generating synthetic diseased apple images and transferring disease 

traits to healthy ones. YOLOV3-Dense, an improved version of YOLO-V3 with DenseNet 

integration, optimizes feature extraction and improves lesion detection accuracy, outperforming 

Faster R-CNN and the original YOLO-V3 in tests. 

 

CycleGAN, introduced by Jun-Yan Zhu et al. at ICCV 2017 [4], enables unpaired image-to-image 

translation by using two GANs in a cycle-consistent framework. This framework guarantees that 

an image translated from domain A to domain B can be reverted back to domain A, maintaining 

the essential characteristics of the original. In areas such as medical imaging or artistic style 

transfer, it can create multiple variations of images from one domain and apply them to another, 

expanding datasets even when ground truth pairs are unavailable. This not only improves the 

robustness of machine learning models but also reduces the dependency on large, curated datasets. 

In the paper, Tian et al. focus on detecting apple lesions, particularly anthracnose, using deep 

learning methods CycleGAN and YOLOV3-Dense 

 

WGAN, proposed by Martin Arjovsky et al. at ICML 2017 [5], addresses the instability in GAN 

training by using the Wasserstein distance instead of traditional divergence metrics. Wasserstein 

distance in the context of GAN, measures how different the generated data distribution is from the 

real data distribution, offering smoother gradients for more stable training compared to traditional 

distance metrics. An enhanced generative adversarial network (GAN) model, named AWGAN, 

proposed by Xin et al. [6] gives notable performance for the data augmentation of plant diseased 

leaf images. The goal is to address the limitations of small datasets in deep learning-based plant 

disease recognition, which can cause overfitting and reduced model accuracy. AWGAN uses the 

Wasserstein GAN loss function for stable training and incorporates a self-attention layer to 

improve feature extraction, enhancing the model’s ability to generate realistic images. The method 

is tested on corn leaf disease images from the PlantVillage dataset, generating around 30,000 

images to augment the dataset. The augmented data is subsequently used to train models such as 

AlexNet, VGG16, and ResNet18. AWGAN outperforms other GAN-based augmentation 

techniques, achieving the highest recognition accuracy, with a 1-2% improvement. This method 
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significantly enhances the training data, leading to better model generalization, especially in cases 

with limited sample sizes. 

 

The paper presents Leaf GAN [7], a data augmentation technique utilizing generative adversarial 

networks (GANs) to tackle the issue of insufficient training data for grape leaf disease 

identification. Collecting sufficient disease images is labor-intensive, leading to overfitting in 

CNN-based models [8]. Leaf GAN generates synthetic images for four categories: black rot, Esca 

measles, leaf spot, and healthy leaves, using a generator with degressive channels and a 

discriminator enhanced by dense connectivity and instance normalization for effective lesion 

feature extraction. The model’s stability is ensured through a deep regret gradient penalty 

technique. Leaf GAN produced 8,124 high-quality images from 4,062 original samples, 

outperforming DCGAN and WGAN in terms of Fréchet Inception Distance (FID). When the 

augmented dataset was used to train classifiers, models like Xception achieved 98.7% accuracy, 

demonstrating improved identification performance over traditional methods. This approach offers 

a practical solution to the data scarcity problem in agricultural disease detection, enabling better 

generalization and accuracy in automated grape disease diagnosis.  

 

In this regard, most of the data augmentation models have been operated on the dataset for plant 

disease detection. Antwi et al. performed the comparison in their paper [9]. The novelty of the 

paper lies in its comprehensive comparison of traditional image augmentation methods and 

generative adversarial networks (GANs) specifically for plant disease detection (PDD). While 

previous studies have separately reviewed various data augmentation techniques, this paper 

uniquely provides a systematic analysis of how GANs stack up against basic augmentation 

methods in improving the performance of deep learning models like convolutional neural networks 

(CNNs) in PDD. The paper identifies specific GAN types, Techniques like DCGAN have proven 

effective in improving dataset quality and model accuracy, offering valuable insights for PDD 

applications. Furthermore, it addresses key challenges in applying GAN-augmented data to real-

world farming situations, such as dataset imbalance and the complexities of generating realistic 

synthetic images. Pest detection and identification are crucial in the sense that they are tiny, 

numerous, and large amounts of data collection through imaging devices is much more difficult.  

 

● This paper aims to study different data augmentation models suitable for plant-based pest 

image generation and their performance.  

● In a comparative review of GAN-based models on the Sawfly dataset, key benefits emerge, 

particularly in optimizing performance for small, low-resolution datasets.  

● Evaluating different GAN architectures (e.g., DCGAN, CycleGAN, WGAN, Hybrid GAN) 

can identify models best suited for generating high-quality, synthetic images that enhance 

data diversity and reduce overfitting risks, a common issue with limited datasets.  

● This review offers insights into the trade-offs between performance and computational 

requirements by evaluating model stability, realism, and resource efficiency, which are 

crucial for choosing the most suitable models for limited agricultural datasets.  

● These findings not only inform optimal GAN selection for Sawfly data but also serve as a 

resource for similar small-scale, low-resolution agricultural applications.  

 

The task of plant-based pest detection is basically a pipeline of data augmentation to enhance the 

dataset and an object detection model. Object detection models are computationally intensive and 
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require large datasets.  Since in the applications of the agricultural domain, more lightweight and 

computationally less intensive models are desirable, to operate them on edge devices in the IoT 

framework. In addition to the data augmentation to overcome data scarcity to work with small 

datasets, a discussion based on lightweight object detection models like YOLOv7, YOLOv7-tiny, 

PestNet, and ImageNet [3], [10], [11] helps to understand the overall architecture of pest detection 

methods.  
 

Organization of GAN-based Techniques for Detection 

 

 

 

 

Table 1: Comparative study of different GAN models for Data Augmentation used in Agriculture 
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3.  Structural Design of this Work: 

This is a breakdown of this paper’s structure: 

• Section 2 outlines related works of the paper 

• Section 4: Data Augmentation technique based on GAN for saw-fly pest images 

• Section 5: proposed methodology for data augmentation. 

• Section 6: provides the experiment of this work. 

• Section 7: offers the results and discussion. 

• This paper concludes in Section 8, providing future recommendations for improving 

the visualization and identification of plant pests. 

In Figure-2, the organization of the work has been presented. 

 

4. Dataset: 

 

The problem of pest detection inherently faces the challenge of data scarcity. Collecting high-

quality, labeled pest images is time-intensive and resource-demanding, especially for small pests 

like Sawfly, which require close-up imaging under controlled conditions. Additionally, the 

lightweight nature of the object detection models used in this study makes them suitable for 

deployment on edge devices such as smartphones and IoT-enabled agricultural sensors. These 

practical constraints further necessitate working with limited data, as such systems are typically 

optimized for low computational resources and small datasets. 

In this study, we begin with a relatively small dataset of 100 images to evaluate how different GAN 

architectures perform in generating synthetic pest images under data-constrained scenarios. This 

approach helps in understanding the potential of GAN-based augmentation to alleviate the 

challenges posed by limited data availability. By creating diverse and realistic synthetic images, 

these models aim to enhance dataset variability and improve model training even with small 

sample sizes. 

 

4.1. Dataset Arrangement: 

At first, we gathered images of Sawfly pests to train and test our proposed classifier (a few sample 

images are present in Figure 1). The images were collected from different sources like laboratory 

data, field data, and several Weblinks, such as from the Plant-Village site. Next, we categorised 

the images into one class. Three hundred photos of maize leaves from PlantVillage data set B made 

up the experimental data set. The test and training data are separated by a ratio of 1:4. Table 2 

displays the Sawfly data used in this experiment.  

 

4.2. Dataset Labeling: 

We re-shaped the collected mung bean images of our dataset to 160x160 to decrease the training 

time, which was spontaneously calculated in the Python platform by the defined written script, 

which used the context of the OpenCV. 
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Pest Name  Crop Name       No. of Images       

 

 

 

Saw Fly 

Cabbage 20 

Cauliflower 20 

Mustard 20 

 Radish 20 

Turnip 20 

 

Table 2: The Sawfly image dataset used in the experiment 

 

 

Equipments  Specifications  

Processor  Intel core i7, 7800X GPU 3.5 GHz 

Memory  256 GB 

Graphics  GeForce GTX 1080Ti 

 

Table 3: Required Hardware setup for the experiments 

 
Figure 1: Original image data (sample) of the Sawfly dataset 
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Figure 2: GAN based synthetic image generation technique for Data Augmentation 

 

5. Proposed Methodology: 

 

The workflow of the proposed model or the data augmentation pipeline is represented as follows- 

 The pest images are extracted from the original images in the dataset using Bounding box 

method. 

 Train CycleGAN with the extracted pest images to produce synthetic pest images. 

 Prepare the pest masks from the pest images using binary thresholding method. 

 Apply CPB to blend the pest masks into external leaf images to prepare the final synthetic 

image. 

 Assemble the original images and synthetic images to get new dataset with adequate 

amount of data to be used for Deep Learning based object detection methods like YOLOv7 

and more. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original Image 

Pest Image 

CycleGAN  

Result of CycleGAN 

after training with pest 

images 

Pest Mask 

Generation  

External Leaf Image 

Copy-

Paste-

Blend 

Data Augmentation 

Pipeline 

Figure 3: Proposed Data Augmentation Pipeline 
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6. Experiment: 

6.1. Experimental Setup – 

Here’s a table summarizing the computational requirements for different GAN models based on 

their complexity and GPU requirements: 

 

6.2. Our observations - 

All the experiments were actually performed on a 12th Gen Core i7-12700H with 16 GB RAM. 

The resolution of the images used was 180X180. The generative models used in the experiments 

were trained using Keras and Tensorflow. According to the previous discussions four models 

DCGAN, CycleGAN, WGAN and CPB+GAN were applied on the SawFly dataset. 

● Since the dataset is too small with only 100 images, DCGAN was trained with different 

setup with (Batch size=64, epochs=5000), (Batch size=64, epochs=200) and (Batch size=8, 

epochs=200), among these the first one gave better result. 

● CycleGAN was trained using 100 epochs and got better results than DCGAN. 

● Wasserstein GAN(WGAN) , trained with batch_size=16, epochs=1000, clip_value=0.01 

did not show satisfactory results for the dataset used in the experiment. 

 

Table-4: Basic computational requirement for GAN based models 
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● But surprisingly the CPB+GAN method was adopted by Karam et al. [7] to develop their 

webapp CPB Image Generation Tool at Humans and Machine Lab, American University 

of Beirut was generating repetitive images taking the images of our dataset as source 

images and the pest masks as mask images. Finally, inspired by [7] the Copy-Paste-Blend 

method was applied in our experiment on external leaf images with pest masks. Pest masks 

were generated using Binary thresolding applied on extracted pest images om original 

images from the dataset. The above mentioned pipeline gave a satisfactory result and can 

be used in future. 

7. Result: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: DCGAN result with batch size = 64, 

epoch = 5000 
Figure 6: CycleGAN result with epoch = 100 

Figure 7: WGAN at 

epoch=400 

Figure 8: WGAN at 

epoch=1000 
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8. Conclusion & Future Scope- 

In this study, we explored popular GAN models to enhance data augmentation, a key requirement 

when working with small datasets for plant pest detection. Future work will expand this study to 

larger and more diverse datasets, allowing for a comprehensive analysis of the generalizability and 

scalability of these GAN-based augmentation techniques. This progression will enable a more 

robust assessment of how such methods can be integrated into real-world agricultural systems for 

accurate and efficient pest detection.  

Our primary goal was to identify a suitable model for augmenting images of small pests, 

specifically aiming at real-world scenarios where images captured on farms often make it 

challenging to distinguish smaller pests. However, for our experiment, we used a dataset 

containing zoomed-in images of sawflies, where pests were clearly visible, reducing the difficulty 

of identifying and extracting the objects in each image. This dataset was more applicable to data 

augmentation than direct object detection, as the extracted images were already optimized for 

isolating pests. Our findings indicate that CycleGAN outperformed other models in generating 

synthetic pest images for the dataset used. Besides CycleGAN, the Copy-Paste-Blend (CPB) 

technique demonstrated strong potential for seamlessly merging pest masks with leaf images. By 

blending pest masks of different scales with various leaf backgrounds, this method produces more 

natural-looking synthetic images. Moving forward, we aim to develop a more versatile model that 

can adapt to diverse datasets, learning patterns and scales to generate even more realistic synthetic 

Figure 10: Copy-Paste-Blend 

output  
 Figure 9: Before Copy-Paste-Blend Source 

leaf image 

Pest Image 

Pest mask generated by binary 

thresholding 
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images and can work for several types of pest. These improvements could refine data augmentation 

tools, leading to more accurate pest detection in real-world applications.  
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