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Abstract. Accurate orbit prediction is crucial for space situational aware-
ness. However, Physics-based approaches can fail to achieve the required
accuracy for collision avoidance of Resident Space Objects (RSOs). This
paper presents a Machine Learning-based approach for RSOs orbit pre-
diction leveraging Two-Line Element (TLE). Taking the dynamic nature
of orbital deviations into consideration, we integrate a dynamic loss func-
tion into the orbit prediction framework, allowing for a more adaptive
and accurate prediction model. The experiments demonstrate the supe-
rior performance of our proposed method in predicting RSOs orbits over
extended periods.

Keywords: Orbit Prediction · Space Objects · Dynamic Loss Function
· Convolutional Neural Networks · Long Short Term Memory.

1 Introduction

The increasing number of Resident Space Objects (RSOs), particularly in low-
Earth-orbit (LEO) [1], has made accurate prediction of RSOs orbits crucial. Tra-
ditional prediction methods take into account various influences, such as gravity,
atmospheric drag, and solar radiation pressure from the Earth, Moon, and Sun,
enabling high-precision RSOs trajectory predictions through simulation and cal-
culation. However, these physics-based approaches often lack crucial information
including initial state, environmental conditions, and target characteristics [4],
limiting their accuracy and requiring computationally demanding processes [2,
3].

In order to address this issue, machine learning technology has emerged as a
novel approach that has garnered significant research attention. Machine learn-
ing presents an alternative methodology for modeling and prediction compared
to traditional methods. Through the analysis of historical orbital data and the
application of relevant algorithms, machine learning techniques can identify pat-
terns and enhance the predictive capability of RSOs orbital models. Currently,
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RSOs orbit prediction based on TLE(Two-Line Elements) datasets is a well-
established practice in the aerospace industry, with TLE datasets providing
detailed information on RSOs orbit elements for rapid and efficient orbit pre-
diction [5]. Previous studies have demonstrated that the utilization of machine
learning techniques can substantially enhance the accuracy of orbit prediction.
Hao et al. conducted extensive research using artificial neural networks to sig-
nificantly enhance orbit prediction accuracy[6] and explored the application of
SVM[7] in satellite orbit prediction, demonstrating the broad potential of ma-
chine learning methods for improving orbit prediction precision. Their study
utilized a simulation-based spatial catalog environment to showcase three gen-
eralization abilities of the proposed machine learning methods[8], systematically
investigating the use of three algorithms (SVM, ANN, and Gaussian processes)
for orbit prediction accuracy[9]. Additionally, they proposed an innovative fusion
strategy that integrates machine learning outputs into a traditional framework
using the Extended Kalman Filter (EKF) for orbital estimation and prediction,
showing improved accuracy and precision in orbit prediction through simula-
tions[10]. Li et al. introduced a novel orbit prediction method using TLE, em-
ploying GBDT and CNN to model and analyze error datasets, achieving over
a 75% increase in prediction accuracy along the orbit direction[11]. Giridhar
improved the accuracy of traditional TLE prediction by using curve fitting and
LSTM to predict historical track data[12]. Rohit proposed a computer vision ap-
proach based on real-time Earth images to predict satellite orbits when ground
communications are lost. This method, which uses neural networks trained on
image datasets, outperforms traditional Kalman filters[13]. Estel et al. trained
supervised learning models based on Kepler and SGP4 orbital models to predict
inter-satellite links. Their study demonstrates how data from these orbital mod-
els can enhance ISL prediction accuracy, thereby optimizing link management
and space resource utilization in satellite networks[14].

Although TLE-based orbit prediction has made some progress, there is still
a research gap in developing methods to dynamically adjust prediction models
based on real-time orbit data. Current methods often rely on predefined param-
eters and assumptions that may not accurately reflect the complex dynamics of
RSOs orbits. Inspired by L2T-DLF, the model dynamically adjusts the loss func-
tion during training [15]. Different from the traditional TLE-ML orbit prediction
method, this paper presents a new and effective method using TLE for accurate
orbit prediction by training the orbit error model. In our study, building on the
existing TLE-ML orbit prediction framework and learning from changing orbit
prediction errors by introducing a dynamic loss function, our proposed approach
aims to bridge this gap and improve the prediction accuracy of TLE-based orbit
prediction models. As a feedback mechanism, the dynamic loss function continu-
ously evaluates the accuracy of the prediction and updates the model parameters
accordingly. By combining orbital prediction error with feedback signal from the
loss function, our approach aims to enhance long-term predictive capability of
tle-based orbital predictions.
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Currently, traditional orbital prediction methods are mainly based on physi-
cal models, and there are three general ideas, namely numerical, analytical, and
semi-analytical methods [17], which are essentially all based on physical models.
TLE published by the North American Aerospace Defense Command (NORAD)
is the most commonly used orbital data by the majority of aerospace worker,
and is published on the space-track website, which is the largest publicly avail-
able catalog of space objects [16]. The Simplified General Perturbation 4 (SGP4)
propagator that accompanies the TLE data, a mathematical model for calculat-
ing and predicting the orbits of space objects, was developed by NASA and is
a common analytical method.The SGP4 propagator allows for the equations of
motion to be solved quickly because of some simplification of the ingress model,
yielding a lower approximation of accuracy. As a result the computation is ex-
tremely fast and the computational and time costs are dramatically reduced.
The orbital dynamic motion equation of a space object in the geocentric inertial
coordinate system(ECI) is as follows [17, 18]

f(x, c, t) = r̈ = −µ⊕
r3

r + apert(r, ṙ, t) + Γ , (1)

Where x is the state vector of the space object, consisting of six dimensions:x =
[r, ṙ], with r, ṙ and r̈ representing the position vector, velocity vector, and ac-
celeration vector of the space object, respectively. The parameter c refers to
the force model parameters, including the drag coefficient Cd, which is used
to calculate atmospheric drag effects. The variable t represents time. r = ||r||
denotes the Euclidean norm of the vector r.µ⊕ = GM⊕, where G is the grav-
itational constant and M⊕ is the mass of the Earth. apert is the perturbation
acceleration vector caused by non-spherical gravity, third-body gravity attrac-
tion, atmospheric drag, solar radiation pressure, etc. Γ is the thrust acceleration
vector.

To predict the motion of a space object using the SGP4 propagator, the
initial state x0 = [r, ṙ]t=t0

and the resistance coefficient Cd of the future epoch
t must be provided. With these inputs, the SGP4 propagator can be used to
determine the predicted state at time t.

In this study, the determination and prediction of space object orbits are
carried out using only TLE data and the SGP4 propagator. In practice, the
true orbit of a space object is unknown and can only be estimated through orbit
determination methods. Therefore, the TLE data at a specific moment is consid-
ered as the corresponding estimated orbit. The orbit prediction error is defined
as the difference between the real orbit value and the predicted orbit value. For
a specific space object’s TLE, an important characteristic of TLE-based Orbit
Prediction (OP) error is that the orbital error around the TLE reference epoch
is relatively small [19]. Based on this observation, in the existing technique, the
state vector derived from each TLE at its epoch is treated as an approximation
of the true vector. Since the forecast error of TLE within the orbital period
centered on its epoch is relatively small, the forecast state during that period
is used as the reference state in this study. The previously predicted state of
the TLE at that interval is used as a prediction [20]. Therefore, the prediction
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error can be obtained by subtracting the orbital reference state quantity from
the predicted orbital state quantity at a specific epoch time, denoted as:

e = X̂pred −Xtrue, (2)

At the jth TLE moment, take the long orbital period interval centered on the
epoch moment, divide this time interval into n parts, so that n+ 1 time points
can be obtained.

tj,k = tj −
T

2
+ k

T

n
, k = 0, 1, 2, . . . n, (3)

In this time period, the reference state vector of tj,k is estimated according to
the tj TLE, and the predicted state vector of tj,k is estimated by the ti TLE, so
equation (2) is rewritten as:

e = X̂(j;i) −X(j) = X̂(j,k;i) − X̂(j,k;j), (4)

Where, ti and tj are the epoch corresponding to the ith and jth TLE respectively,
i<j, indicating that the TLE at epoch i is used to obtain the predicted state
vector, and the TLE at epoch j is used to obtain the predicted vector, which
is used as an approximation of the real state vector. Then, the ith TLE is
extrapolated to all epoch within the forecast time threshold T one by one, and
compared with the subsequent TLE derived state vector to obtain the prediction
error. Fig.1 is the schematic diagram of the process.

Fig. 1: Generation of TLE orbit prediction error

Our research stands out among previous studies and makes two significant
contributions to enhance the accuracy and reliability of orbit predictions. These
contributions include:

(1)Introduction of a new strategy: We propose a novel strategy to improve
the accuracy of orbit prediction by incorporating a dynamic loss function into the
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TLE-ML framework. Unlike traditional TLE-ML methods that employ a static
loss function with a fixed weight during training, our approach dynamically
adjusts the weight of the loss function based on the characteristics of the input
data. This dynamic adjustment enables the model to prioritize critical moments
and important features, thereby enhancing the prediction accuracy.

(2)Experimental validation: We extensively validate the effectiveness of our
proposed strategy through empirical experiments in various orbit prediction
tasks. By comparing our strategy with traditional TLE-ML methods, we ob-
serve significant improvements across multiple datasets and assessment metrics,
confirming the practical benefits of our approach.

In the following, section 2 provides an overview of data and models, encom-
passing dataset descriptions and deep learning algorithms with dynamic loss
functions. This section highlights the use of convolutional neural networks (CNN)
and Long Short-Term Memory (LSTM) models as the primary approaches for
error pattern learning. Section 3 presents experimental results aimed at enhanc-
ing the accuracy of orbit prediction. Finally, Section 4 offers conclusions and
outlines future directions for research.

2 Data and Pineline

2.1 Dataset Description

Machine learning algorithms rely on input space X and output space Y, and
can learn an underlying mapping relationship Y = ψ(X ). The success of ma-
chine learning algorithms largely depends on the selection of features, so in the
modeling of orbit prediction errors, it is necessary to carefully select the features
that have a decisive influence on the target variable y. In general, too many
variables will lead to overfitting of the model, while too few variables may lead
to underfitting. Features should be reasonably selected to adequately describe
the evolution characteristics of orbit prediction errors.

The OP error is converted from an Earth-centered inertial coordinate sys-
tem (ECI) to a RSOs-based UNW (in-orbit, normal, and cross-orbit) coordinate
system e = [∆U,∆N,∆W ]. Take e as the output variable at epoch j, then the
corresponding input variable is: [∆t,x(ti),x(tj ; ti), B∗].

1. ∆t = tj − ti, j>i indicates the interval between the start epoch ti and the
end epoch tj .

2. x(ti) represents the initial state vector in the ECI frame, consisting of posi-
tion and velocity vector, expressed as x(ti) = [rix, r

i
y, r

i
z, ν

i
x, ν

i
y, ν

i
z].

3. x(tj ; ti) represents the orbital prediction state vector in the ECI frame, and
the predicted vector about the epoch j is obtained based on the epoch i.It
can also be expressed as x(tj ; ti) = [rj←i

x , rj←i
y , rj←i

z , vj←i
x , vj←i

y , vj←i
z ].

4. In solving the equation of state of a space object, the atmospheric drag
effect is an important parameter and therefore the value of B∗ is taken into
consideration.
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According to the above definition of input variables and output variables,
a series of data pairs (xi, yi) can be obtained, thus constituting the error data
set D = (x1, y1), (x2, y2), . . . , (xn, yn). xi is a 14-dimensional vector, and yi is a
3-dimensional vector. So the goal of machine learning approach is to learn the
mapping between x and y. If the machine learning approach is good at capturing
potential error patterns, it can be used to correct future time orbit predictions.

Due to observation errors and uncontrollable external factors, there will be
some outliers in TLE data, outliers in the generated forecast track, and outliers
in the corresponding error data set. Taking into account the nature of TLE’s
prediction errors that grow over time, a data-cleaning strategy based on box
plot, which displays a large amount of information in a simplified format, has
been adopted to find outliers. It can show the concentration of the data set,
dispersion trends, and highlight outliers. The box plot of the integer error dataset
is drawn, and five representative values are obtained, namely the minimum Q1,
first quartile Q2, median Q3, third quartile Q4, and maximum Q5. Define the
difference IOR = Q3 − Q1, called interquartile range. Data points outside the
range [Q1 − 3 ∗ IQR,Q3 + 3 ∗ IQR] are defined as outliers, which need to be
eliminated to obtain a new error dataset.

2.2 Deep Learning Methods with Dynamic Loss Function

In this paper, our goal is to use a machine learning model to learn a dataset
of historical OP errors and apply it to the performance evaluation of prediction
errors at future moments, which is a regression problem. For this purpose, we
designed two different models, a CNN model based on one-dimensional convo-
lution and an LSTM model containing eight LSTM layers and one linear layer.
By using the one-dimensional convolutional CNN model, we can extract features
from historical OP error data and make predictions. The one-dimensional con-
volution operation can effectively capture local patterns and features in time
series data, providing useful information for subsequent prediction tasks. On the
other hand, our LSTM model consists of eight LSTM layers and one linear layer.
This architecture allows the model to gradually build up an understanding of the
sequence data and learn long-term dependencies.The memory units and gating
mechanisms of the LSTM enable it to efficiently process the sequence data and
capture the contextual information in the sequence. The linear layer is used for
final output prediction. These two models allow us to learn and predict historical
OP error data and evaluate their performance in terms of OP error at future
moments. This helps to understand the accuracy and reliability of the models
and their applicability in OP tasks.

Generally speaking, the loss function of a machine learning model needs to
be predetermined, for example, the loss functions commonly used in regression
problems are mean square error(MSE), root mean square error(RMSE) and
mean absolute error(MAE), etc. Inspired by the teaching relationship in real
life, Wu et al. introduced this relationship into machine learning, proposed the
concept of learning to teach, and proposed L2T-DLF on this basis. In this frame-
work, the loss function of the machine learning model (called the student model)
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Fig. 2: Dynamic feedback loop between student model and teacher model in
training process

is defined by another machine learning model (called the teacher model). As a
parametric model, the teacher model dynamically outputs different loss func-
tions that will guide the use and optimization of the student model in different
training stages [13]. Inspired by L2T-DLF, we introduce the dynamic loss func-
tion into the orbit prediction problem. Based on the traditional machine learning
model (called the student model), a parametric model (called the teacher model)
is introduced that is responsible for setting the appropriate loss function l for
the student model by outputting the appropriate loss function coefficients Φ. At
each stage of the iteration of the student model, a state vector st is generated,
which contains the current iteration number t, the precision p of the current
training. The input of the teacher model is a state variable st, and the output
is a loss function coefficient Φ. The loss function is dynamically updated by the
loss function coefficient.

Φt = µθ(st), (5)

lΦt
(ŷ, y) = ΦtMSE, (6)

Equation (5) calculates the coefficient of the loss function in the teacher model,
where the parameter is θ, and it calculates the loss coefficient Φt for the tth
iteration. On the other hand, Equation (6) represents the loss function that is
calculated using the mean square error (MSE), which is defined as: MSE =
1
n

∑n
i=1 (yi − ŷi)

2. Here, yi represents the actual value and ŷi represents the
predicted value. The mean square error is a commonly used metric to measure
the average squared difference between the predicted and actual values. The
implementation flow of deep learning methods with dynamic loss function in the
error pattern modeling is given in Fig.2.
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3 Experimental Results

In this experiment, a total of five RSOs were chosen as the experimental objects.
Their relevant information is presented in Table 1. The table includes the average
values of orbital inclination, eccentricity, and orbital period, which were obtained
from all sets of TLE data for the specific year. TLE data from the first to the
sixtieth day(1st to 60th day) were utilized to create error datasets for training
purposes. The TLE data from the sixty-first day were then employed to generate
updated orbit predictions for the subsequent fourteen days (61st to 74th day).
These updated predictions were used as new inputs to evaluate the performance
of the trained machine-learning model in terms of its ability to make improved
orbit predictions for future periods.

Table 1: Information of RSOs
NORAD

ID Object type Year Eccentricity Incli.[deg] Period[min] Perige[km]

17732 DEBRIS 1977-12-21 0.16723 65.8 103.39 778
24843 DEBRIS 1997-06-06 1.02854 63.3 129.74 1222
24871 PAYLOAD 1997-07-09 0.01226 86.4 99.99 749
24907 PAYLOAD 1997-08-21 0.00221 86.4 100.37 773
45859 PAYLOAD 2020-07-04 0.13273 98.2 98.69 600

3.1 Metric

In order to evaluate the performance of error model trained by ML method, an
metric of model performance is proposed. Let the predicted error value ê obtained
by ML method be, which can be calculated as ŷ = ψ(X ). Where ŷ is the output
value obtained by the machine learning model at the given X . So the residual
error can be expressed as ∆e. In order to evaluate the performance of error
model trained by ML method, an metric of model performance is proposed. Let
the predicted error value ê obtained by ML method be, which can be calculated
as ŷ = ψ(X ). Where ŷ is the output value obtained by the machine learning
model at the given X . So this residual error ∆e can be expressed as

∆e = e− ê, (7)

The metric PM is used to measure the performance of ML approach in improving
OP, which is defined as

PM = (1− RMS∆e

RMSe
)× 100%, (8)

Where RMSe =
√

1
n

∑n
k=1 e

2
k, RMS∆e =

√
1
n

∑n
k=1∆e

2
k.In this context, a

higher metric value indicates better model training. Specifically, a smaller value
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of RMS∆e and a closer value of PM to 100% are desirable. However, if the pre-
dictive performance of the model is not optimal, the PM value may result in
a negative value. This suggests that an incorrect model was established during
the training process, leading to poor predictions. Compared to traditional error
metrics, PM more directly reflects the accuracy of the model’s predictions. It
offers a clear and effective method for assessing the model’s performance in or-
bital prediction tasks, aiding in the identification and optimization of the model’s
predictive capabilities.

3.2 Performance Comparison

Our methodology aims to improve the accuracy and robustness of orbit predic-
tions by combining the efficiency of TLE data with the adaptability of a dynamic
loss function. To validate the effectiveness of our proposed methodology, we con-
ducted experiments using real-world RSOs orbit data. In these experiments, we
compared the performance of our dynamic TLE-based prediction method with
traditional static prediction models. The results of these experiments demon-
strated that our method significantly enhances the predictive accuracy of orbits
over extended time periods. By dynamically adjusting loss function of predic-
tion models based on evolving orbital conditions, our method outperforms static
prediction models. This adaptive approach enables us to achieve enhanced pre-
cision in orbit determination, leading to more accurate and reliable RSOs orbit
predictions.
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Fig. 3: Orbit prediction error variation of the object 17732 in U , N , and W
directions.

Table 2 presents a summary of the performance of the trained CNN and
LSTM models, as well as their combinations with the dynamic loss function
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Table 2: Performance metric on RSOs with different ML approaches

NORAD ID

PMU PMN PMW

CNN LSTM CNN LSTM CNN LSTM
CNN+DLF LSTM+DLF CNN+DLF LSTM+DLF CNN+DLF LSTM+DLF
CNN+HE LSTM+HE CNN+HE LSTM+HE CNN+HE LSTM+HE

17732
84.55 84.50 80.24 88.43 84.98 93.96
94.99 94.42 96.51 94.71 95.70 94.22
82.07 89.91 82.45 84.09 85.78 87.92

24843
85.35 78.39 84.19 77.31 90.16 88.21
92.94 90.83 93.30 91.04 93.86 90.76
75.95 65.25 73.07 77.76 90.73 80.64

24871
94.34 96.27 93.24 94.30 93.43 93.65
96.70 96.35 97.14 95.70 96.64 96.16
93.31 94.26 98.14 95.41 91.38 95.84

24907
95.41 87.03 92.34 83.80 96.76 93.55
96.45 96.22 96.78 95.74 96.52 94.99
96.61 90.24 95.61 95.25 96.35 84.59

45859
91.09 95.92 95.39 93.81 91.63 95.61
96.54 97.14 96.94 97.06 96.68 96.42
84.49 96.58 85.63 94.47 92.19 96.94

(CNN+DLF and LSTM+DLF), in terms of their ability to generalize orbit pre-
diction errors for the next 14 days across five different RSOs. The performance
of trained ML model is measured using the metric PM.The evaluation of the
models considers three error directions obtained from the decomposition: eU ,
eN , and eW . From Table 2, it can be observed that the accuracy of error predic-
tion significantly improves with the trained CNN+DLF and LSTM+DLF models
compared to their respective single models.

The fluctuation of the error components with prediction time in each direc-
tion for object 17732 is shown in Fig. 3, where it is evident that the error increases
quickly with increasing prediction time. Because of the considerable influence of
atmospheric drag on the orbit, the orbit prediction error typically diverges with
forecast time. The results presented in Fig. 4 indicate that the forecast error in
the N direction is approximately 100 km at a prediction period of 14 days, the
prediction error in the W direction is around 50 km for 14 days, and the predic-
tion error in the U direction is nearly 150 km. Plotting the error prediction time
scatter plot for each of the other RSOs is found that U is the main error compo-
nent for all of them, and the errors in the N and W directions are closer together
or are all relatively small, so the analysis that follows focuses on that direction.
The performance of CNN, LSTM, and their combined models with the dynamic
loss function on five space objects is illustrated in Fig. 4-8. The horizontal axis
of each graph represents the prediction time, while the vertical axis represents
the error. The black dots represent the true error, the gray dots represent the
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(a) CNN, PM = 84.55%
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(b) CNN+DLF, PM = 94.99%
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(c) LSTM, PM = 84.50%
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(d) LSTM+DLF, PM = 94.42%

Fig. 4: Performance of different ML models for object 17732
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(a) CNN, PM = 85.35%
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(b) CNN+DLF, PM = 92.94%
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(c) LSTM, PM = 78.39%
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(d) LSTM+DLF, PM = 90.83%

Fig. 5: Performance of different ML models for object 24843
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(a) CNN, PM = 94.34%
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(b) CNN+DLF, PM = 96.70%
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(c) LSTM, PM = 96.27%
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(d) LSTM+DLF, PM = 96.35%

Fig. 6: Performance of different ML models for object 24871
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(a) CNN, PM = 95.41%
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(b) CNN+DLF, PM = 96.45%
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(c) LSTM, PM = 87.03%
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(d) LSTM+DLF, PM = 96.22%

Fig. 7: Performance of different ML models for object 24907
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(a) CNN, PM = 91.09%
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(b) CNN+DLF, PM = 96.54%
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(c) LSTM, PM = 95.92%
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(d) LSTM+DLF, PM = 97.14%

Fig. 8: Performance of different ML models for object 45859

prediction error of the machine learning model, and the green dots represent
the difference between them. The data points were grouped into 14 categories
based on prediction time t. Each group’s mean is denoted by a center marker,
and its standard deviation is represented by the length from middle to top (or
bottom) of the bar chart. When a model effectively captures prediction error
patterns, it results in close proximity between prediction error and true error,
indicating residual closeness to zero. In Fig. 4, it can be observed that trained
ML models excel at extracting potential TLE error patterns and demonstrate
strong performance on an error dataset over a period of 14 days with PM exceed-
ing 84%. Specifically, CNN and LSTM models achieve performances of 84.55%
and 84.50%, respectively; whereas CNN+DLF and LSTM+DLF show improve-
ments by 10.44% and 9.92%, respectively compared to individual models.The
prediction error curves of CNN+DLF and LSTM+DLF in Fig. 5 demonstrate
a high level of consistency with the actual prediction error curves, with PM
values of 96.45% and 96.22% respectively, representing increases of 1.04% and
9.19% compared to the single model. Fig. 6-8 illustrate that the CNN+DLF and
LSTM+DLF models exhibit superior generalization ability in the U direction
compared to their single counterparts, resulting in significantly improved PM
values.

To demonstrate the efficacy of the dynamic loss function strategy in capturing
the prediction error mode of RSOs, this paper discusses a novel approach called
the HawkEye loss function. This loss function is designed to proficiently handle
outliers and noise in Support Vector Regression (SVR)[21]. As shown in Table
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2, the model’s performance with the HawkEye loss function improves over the
traditional square loss function. For instance, with NORAD ID 24907, the model
using the HawkEye loss function achieves PM of 96.61%, 90.24%, 95.61%, and
95.25% in the U and N directions, respectively—surpassing the results obtained
using the square loss function. Although the HawkEye loss function enhances
the model’s performance to some degree, it still falls short compared to the
dynamic loss function across the majority of satellites. In general, the HawkEye
loss function significantly improves the model’s performance when compared to
the baseline model.

4 Conclusion

In this paper, we have introduced a novel approach to RSOs orbit prediction
by integrating a dynamic loss function into the conventional TLE-based predic-
tion framework. Our proposed method utilizes real-time orbital data to adapt
the prediction models, resulting in enhanced accuracy and adaptability of RSOs
orbit predictions over extended time periods. The experimental findings demon-
strate that our methodology outperforms traditional static prediction models
and offers a more reliable solution for precise orbit determination. By utilizing
the trained model for prediction error correction in future instances, we can
achieve an orbit prediction accuracy of over 90% in the along-track direction
for the next 14 days. This significant improvement in accuracy is particularly
noteworthy and provides a more precise representation of real-world variations.
These findings have important implications for various applications that rely
on accurate RSOs orbit predictions, such as space debris monitoring and RSOs
collision avoidance. In terms of future research directions, there are several av-
enues to explore. One promising direction is the integration of advanced machine
learning techniques to further enhance the predictive capabilities of TLE-based
orbit prediction models. This could involve leveraging deep learning algorithms,
recurrent neural networks, or other state-of-the-art methodologies to capture
complex temporal dependencies and improve prediction accuracy. Additionally,
investigating the impact of external factors such as solar activity, atmospheric
conditions, and gravitational perturbations on orbit prediction could lead to
more robust and comprehensive models. Incorporating these factors into the
prediction framework may allow for better long-term predictions and enable ac-
counting for unexpected changes in RSOs orbits.Overall, our research contributes
to advancing RSOs orbit prediction methodologies and opens up possibilities for
enhanced accuracy and reliability in future predictions.
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