
EasyChair Preprint
№ 15668

VizAgent: Towards an Intelligent and Versatile
Data Visualization Framework Powered by Large
Language Models

Hue Luong Thi Minh, Vinh Nguyen The and
Truong Quach Xuan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 6, 2025

VizAgent: Towards an Intelligent and Versatile Data

Visualization Framework Powered by Large Language

Models

Hue, Luong-Thi-Minh [0009-0003-3737-7741] and Vinh, Nguyen-The [0000-0002-1300-3943] and

Truong, Quach Xuan [0000-0003-1402-0803]

Thai Nguyen University of Information and Communication Technology, Vietnam
lmhue@ictu.edu.vn

Abstract. This study proposed VizAgent, a novel framework designed to ad-

dress the challenges in data visualization. By leveraging the capability of Large

Language Model (LLM), VizAgent automates describe data, guides users' inten-

tions, automatically generates visualizations for specific tasks, and compares the

quality of generated visualizations across different libraries. The results demon-

strated that the matplotlib library outperformed other visualization libraries in

terms of success rate, suggesting opportunities for further investigation and im-

provement, particularly in enhancing the performance of seaborn, plotly, and

ggplot visualizations. The VizAgent framework presents a promising approach

to intelligent data visualization, with several avenues for extending its capabili-

ties. These include specialized handling for certain visualization libraries, em-

powering users to fine-tune parameters and styling, and incorporating advanced

data analysis and feature engineering capabilities. VizAgent contributes to the

ongoing efforts in data visualization by providing a valuable resource for re-

searchers, practitioners, and individuals seeking data-driven decision-making.

Keywords: Data Visualization, Generative AI, LLM, Python, Streamlit.

1 Introduction

Data visualization is crucial for conveying information and insights, as it involves in-

tentionally rendered details by computer programs. It's used in various domains like

business, education, and scientific research. However, there are many unsolved prob-

lems which often require expertise from creators in each domain [1, 2].

Researchers are actively conducting a wide range of experiments to address the chal-

lenges in data visualization, some of which have been integrated into commercial prod-

ucts like Microsoft Office and Google Analytics, while others remain in libraries, pack-

ages, and toolkits [2-4]. The evolution of data visualization generation can be classified

into three periods. The first period focused on a rule-based system that tried to capture

user intentions and build visualizations accordingly (e.g., Articulate, DataTone, Eviza,

DeepEye, FlowSense, NL4DV) [3, 4]. However, these studies faced a common obsta-

cle: limited rules to capture diverse user intent. The second period attempted to address

2

the previous limitation by investigating the machine learning paradigm, with the goal

of building a model capable of understanding user intention rather than memorizing

user syntax. Notable works [2, 4] in this period include ADVISor, NL2DV, ncNet,

RGVisNet, and Data2Vis. However, these approaches faced limitations in understand-

ing complex natural language due to the lack of available training data and computa-

tional resources. The advent of generative AI models has ushered in the third period of

data visualization, where visualizers can leverage large language models to overcome

the existing issues. Pioneers in this emerging research include Chat2VIS [5], LIDA [6],

and Data Formulator [7]. The shortage of experiments in this period can be partially

attributed to the computational and resource requirements of these large models, as well

as the limited availability of their APIs over time. Pioneer experiments have shown

promising results, but face challenges such as Chat2VIS's requirement for users to un-

derstand data and ask questions, LIDA's step-by-step visualizations lacking simultane-

ous comparison, and Data Formulator's user involvement, creating barriers for begin-

ners and requiring further investigation.

Our current study seeks to address the previous limitations by providing a novel

framework. In other words, we try to answer the following questions: RQ1: How users’

intention can be guided by the proposed framework based on user’s dataset? RQ2: How

visualizations can be generated based on visualization tasks? RQ3: What are the success

rates of visualizations across libraries? By answering the above questions, our contri-

butions to the body of knowledge are as follows: (1) We propose a framework that is

capable of automatically generating users’ intentions and visualizing them accordingly.

(2) We demonstrate our proposed framework through an intelligent and versatile data

visualization interface powered by Large Language Model. (3) We compare the success

rates of generated visualizations among several libraries.

2 Materials and Methods

Fig. 1. The proposed framework

3

2.1 Research Design

Fig. 1 Illustrates our proposed architecture in which users interact with the system

initially by uploading the dataset. The system automatically processes the data by: (1)

describing the data, (2) formulating visualization tasks, (3) generating visualizations.

We describe each step in details as follows:

Step 1: Describing data

This step involves understanding the structure of data such as the number of col-

umns, headers and data type (property). This information is crucial in the subsequent

step as it provides context for the LLM. Similar to DESCRIBE function in SQL to

describe table with column properties (e.g., varchar, int), we utilized pan-

das.api.types.infer_dtype()– a function in the pandas library that attempts

to infer the data type of a given input - to infer our users’ arbitrary data types. The

output in Step 1 is an array message containing a number of objects (# of columns in

the dataset). Each object is described as an example below:

 1. {
 2. "column": "Year",
 3. "properties": {
 4. "dtype": "int64",
 5. "samples": [
 6. 2018,
 7. 2022,
 8. 2017
 9.],
10. }
11. }

Step 2: Formulating visualization tasks

Upon having a description of data, we formulate visualization tasks through prompt

engineering in which we communicate with LLM via a chat template [8]. The formu-

lation of auto generated visualization tasks can be expressed as follows:

𝑇 = 𝑓(𝑟, Ɗ) (1)

Where 𝑓 is the AI agent or LLM, 𝑟 is the user’s request or requirements and Ɗ is the

data description. As illustrated in the code snippet below, the system role (line 4 with

truncated data) influences how the assistant behaves, and we describe the system mes-

sage in approximately ~800 words. The user role (line 8) asks for the number of vis-

ualization tasks (n is set by users with default value of 5) based on data description

(provided in Step 2). And finally, the assistant role (line 12) supports the system

in the output format. The output format should be a list of Json objects with predefined

properties. At this step, we expect to receive the visualization tasks in the form of pos-

sible research questions based on the provided data description.

 1. messages = [
 2. {
 3. "role": "system",

4

 4. "content": " You are Savant from ICTU AI, a data analyst and
visualizer. The user is in a conversation with you exploring their data
..…(truncated)"
 5. },
 6. {
 7. "role": "user",
 8. "content": "The number of TASKS to generate is {n}. The tasks
should be based on the data summary below \n {summary}"
 9. },
10. {
11. "role": "assistant",
12. "content": "THE RESULT SHOULD BE A CODE SNIPPET OF A LISTED
JSON OBJECTS THAT IS VALID. THE FOLLOWING FORMAT MUST BE USE….(truncated)
"
13. }
14.]

Step 3: Generating visualizations

Given a list of visualization tasks (or possible research questions), when users select

one research question of interest, the system will prepare a message like the previous

ones with updated message contents. In terms of visualization rendering, we provided

four templates from libraries/packages such as matplotlib, seaborn, plotly, and ggplot.

We execute all generated visualization codes for comparison

 1. code = f"""
 2. import matplotlib.pyplot as plt
 3. import pandas as pd
 4. def plot(data: pd.DataFrame):
 5. <params>
 6. plt.title(f“{task.question}”, wrap=True)
 7. return plt;
 8. chart = plot(data)
 9. """

2.2 Experiment Setup

Model selection. Of the many available models on the internet such as CodeT5,

CodeLlama, gpt-4o, gpt-4-turbo, gpt-4, gpt-3.5-turbo, gem-

ini [9], our study focused on gpt-3.5-turbo model from OpenAI. This is due to

our limited hardware constraints (deploy locally) and tokens paid. Furthermore, results

from gpt-3.5-turbo would be served as baseline comparison in many other re-

search settings where funding is limited. The model temperate is set to 0 for con-

sistent response. Framework deployment. To implement our proposed framework, we

utilize Streamlit - a free and open-source Python-based library designed for machine

learning engineers to create machine learning web apps [10]. Hardware specification.

Our study was carried out on Intel(R) Core (TM) i7-10750H CPU @ 2.60GHz 2.59

GHz with 32.0 GB of RAM and 4GB of GPU. The operating system is Windows 10

Pro.

5

2.3 Evaluation

We evaluated the performance of our proposed model in three use cases and examined

whether the visualizations can be corrected generated to fulfil the visualization tasks.

The first use case explored dataset from publications extracted from Scopus. The sec-

ond use case investigate car dataset. The final use case analyzes iris dataset [11].

While the 2nd and 3rd use cases were conducted in the popular dataset, the publication

dataset may be more meaningful as it could help in writing scientific papers.

3 Results

Fig. 2 illustrates our VizAgent application. VizAgent consists of three components: A,

B, C. Component A assists users in defining LLM’s API, selecting model, and config-

uring temperature. Component B enables users to upload their own dataset for explo-

ration. Component C is the automatically generated data description, visualization tasks

and rendering visualizations. Users can adjust parameters in Component C, otherwhile

default parameters are used.

Fig. 2. The intelligent and versatile data visualization interface powered by LLM

3.1 RQ1: How users’ intention can be guided by the proposed framework

based on user’s dataset?

Fig. 3 illustrates examples of flow from VizAgent. When users upload their data, Data

Preparation shows the first five records for examination. In Step 1, data properties were

extracted and stored in dtype (e.g., dtype of “Authors” is string, dtype of “Year” is

int64, dtype of “Source Title” is string, dtype of “Cited by” is int64, etc.). Information

from Step 1 will be concatenated with other contextual information (we manually en-

gineered prompt) then sent to LLM API call. As a result, users’ intention (visualization

tasks/research questions) were presented in Step 2

6

Fig. 3. Example response from VizAgent

3.2 RQ2: How visualizations can be generated based on visualization tasks?

The Step 3 in Fig. 3 shows the results of generated visualizations from different librar-

ies such as matplotlib, seaborn, plotly, and ggplot. By providing code template to LLM

API, the VizAgent responsibility is the execute the response. Fig. 4 provides details of

code generated and its corresponding visualization.

Fig. 4. (Left) Python code received from LLM, (Right) VizAgent renders the visualization

3.3 RQ3: What is the success rate of visualizations across libraries?

To evaluate our proposed framework and the response quality from LLM we conducted

three case studies on different datasets including two popular ones (iris, cars) and one

publication dataset we exported from Scopus. The results are described in Table 1.
Table 1. Performance of VizAgent across four python libraries

Datasets sea-

born

mat-

plotlib

plotly ggplot

Publications

How does the number of citations vary across different

years?
✓ ✓

Which authors have the highest number of publications? ✓ ✓

What are the most common author keywords used? ✓

7

How does the distribution of publication sources look

like?
✓ ✓ ✓ ✓

Is there a correlation between citations and the author(s)? ✓ ✓

Cars

What is the distribution of mpg in the dataset? ✓ ✓ ✓

How does the number of cylinders (cyl) impact horse-

power (hp)?
✓ ✓ ✓ ✓

Which cars have the highest and lowest weight (wt)? ✓ ✓

How does the transmission type (am) affect the accelera-

tion time (qsec)?
✓ ✓ ✓ ✓

What is the relationship between gear type (gear) and rear

axle ratio (drat)?
✓ ✓

Iris
What is the distribution of SepalLengthCm? ✓ ✓ ✓ ✓
How does PetalWidthCm vary across different species? ✓ ✓ ✓
Which species has the highest average SepalWidthCm? ✓ ✓ ✓ ✓
How does PetalLengthCm correlate with Sep-

alLengthCm?

 ✓ ✓

What is the spread of SepalWidthCm for each species? ✓ ✓ ✓ ✓
Success rate (%) 73.3 93.3 73.3 46.7

The analysis of the VizAgent framework's performance across the four Python visual-

ization libraries (seaborn, matplotlib, plotly, and ggplot) reveals that Matplotlib has the

highest success rate at 93.3%, indicating that the framework is particularly well-suited

for generating high-quality visualizations using this versatile library. Seaborn and

plotly also performed reasonably well, with a 73.3% success rate, suggesting that the

VizAgent framework can effectively leverage the capabilities of these libraries to create

informative and interactive visualizations. The lower success rate with ggplot, at

46.7%, may indicate that the framework has more difficulty in translating research

questions into the specific syntax and structure required by this grammar-of-graphics-

based library.

4 Discussion

Overall, the VizAgent framework presents a promising approach to intelligent data vis-

ualization, and there are several avenues for extending its capabilities to meet the evolv-

ing needs of users and the growing complexity of data analysis tasks. First, the frame-

work's lower success rate with the ggplot library suggests that certain visualization li-

braries may require more specialized handling or translation of user intentions and re-

search questions. Second, while the current approach of providing code templates and

relying on the LLM to generate the specific visualization code is effective, allowing

users to fine-tune parameters, styling, or even the underlying algorithms used for visu-

alization could further empower them to tailor the output to their specific needs. Finally,

the VizAgent framework could be extended to provide more advanced data analysis

and feature engineering capabilities such as data cleaning, feature selection, and even

the generation of derived features or transformations.

8

5 Conclusion

The study introduced VizAgent, a new framework designed to address data visualiza-

tion challenges. VizAgent guides users' intentions, automatically generates visualiza-

tions for specific tasks, and compares the quality of generated visualizations across dif-

ferent libraries. Our results demonstrated that the matplotlib library outperformed other

visualization libraries like seaborn, plotly, and ggplot in terms of success rate. The find-

ings suggest opportunities for further investigation and improvement, with new re-

searchers exploring ways to enhance LLM performance for seaborn and plotly visuali-

zations and experienced scientists focusing on ggplot. The VizAgent framework con-

tributes to ongoing efforts in data visualization, providing a valuable resource for re-

searchers, practitioners, and individuals seeking data-driven decision-making.

References

1. Nguyen, V.T., Jung, K., and Gupta, V.: ‘Examining data visualization pitfalls in scientific

publications’, Visual Computing for Industry, Biomedicine, and Art, 2021, 4, pp. 1-15

2. Zhu, S., Sun, G., Jiang, Q., Zha, M., and Liang, R.: ‘A survey on automatic infographics

and visualization recommendations’, Visual Informatics, 2020, 4, (3), pp. 24-40

3. Wang, C., and Han, J.: ‘Dl4scivis: A state-of-the-art survey on deep learning for scientific

visualization’, IEEE transactions on visualization and computer graphics, 2022

4. Yang, W., Liu, M., Wang, Z., and Liu, S.: ‘Foundation models meet visualizations:

Challenges and opportunities’, Computational Visual Media, 2024, pp. 1-26

5. Maddigan, P., and Susnjak, T.: ‘Chat2vis: Generating data visualisations via natural

language using chatgpt, codex and gpt-3 large language models’, Ieee Access, 2023

6. Dibia, V.: ‘LIDA: A Tool for Automatic Generation of Grammar-Agnostic Visualizations

and Infographics using Large Language Models’, in Editor (Ed.)^(Eds.): ‘Book LIDA: A

Tool for Automatic Generation of Grammar-Agnostic Visualizations and Infographics using

Large Language Models’ (2023, edn.), pp.

7. Wang, C., Thompson, J., and Lee, B.: ‘Data Formulator: Ai-powered concept-driven

visualization authoring’, IEEE Transactions on Visualization and Computer Graphics, 2023

8. Marvin, G., Hellen, N., Jjingo, D., and Nakatumba-Nabende, J.: ‘Prompt Engineering in

Large Language Models’, in Editor (Ed.)^(Eds.): ‘Book Prompt Engineering in Large

Language Models’ (Springer, 2023, edn.), pp. 387-402

9. Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang, C., and

Wang, Y.: ‘A survey on evaluation of large language models’, ACM Transactions on

Intelligent Systems and Technology, 2024, 15, (3), pp. 1-45

10. Khorasani, M., Abdou, M., and Fernández, J.H.: ‘Web application development with

streamlit: Develop and deploy secure and scalable web applications to the cloud using a

pure Python framework’ (Springer, 2022. 2022)

11. Omelina, L., Goga, J., Pavlovicova, J., Oravec, M., and Jansen, B.: ‘A survey of iris

datasets’, Image and Vision Computing, 2021, 108, pp. 104109

