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Abstract— Concept drift is a notable challenge in machine 

learning, data mining, and applications involving big data and 

large-scale data processing. The employment of diversity 

measures has emerged as an effective strategy. We examine and 

investigate the role of diversity measures in detecting concept 

drift and provide a comparative analysis of four different 

approaches: DMDDM for drift detection in a fully supervised 

binary classification context, DMDDM-S in a semi-supervised 

context, DMODD for online dri
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ft detection in a fully supervised 

multi-classification context, and HBBE, a hybrid block-based 

ensemble designed for addressing different types of concept 

drifts. Our comparative analysis evaluates the efficacy of these 

methods in detecting concept drift and enhancing model 

performance. The results confirm the effectiveness of all four 

approaches within their respective settings. Moreover, this 

paper provides insights into potential advancements and 

research opportunities in the application of diversity measures 

for concept drift detection. 

Keywords— Concept drift, data stream, non-stationary 

environments, big data applications 

I. INTRODUCTION 

The constant transformation or evolution of data is a 
crucial concern in dynamic settings and applications, 
including aviation, autonomous vehicles, nuclear power 
plants, healthcare, defense, smart urban infrastructure, and the 
aerospace industry. Fundamentally, the critical characteristics 
of these environments are subject to change, potentially 
leading to negative consequences, such as endangering human 
lives, if not adequately addressed [1]. Consequently, learning 
methods must employ sophisticated algorithms to monitor 
these changes and adapt accordingly. Furthermore, the 
effectiveness of learning algorithms may vary due to the 
changing nature of incoming data, meaning that an algorithm 
that is effective today may become outdated following 
changes in the environment or data. 

The literature on learning from data streams identifies the 
phenomenon of class distribution changes within data streams 
as concept drift [2]. In the context of machine learning, 
concept drift describes a situation where the statistical 
properties of the target variable, which the model is designed 
to forecast, shift over time [3]. This implies that the original 

 
 

diminishing efficacy of antibiotics with prolonged use due to 
microbial resistance highlights concept drift; misuse of 
antibiotics can lead to resistance, compromising their 
effectiveness when critically needed. This reflects how 
alterations in medication usage can influence disease 
progression. In the financial sector, areas like bankruptcy 

input data's relevance to the model has altered significantly, 
yet the model remains oblivious to these modifications and, as 
a result, fails to make precise predications. Thus, it is 
imperative for learning algorithms to detect concept drift in 
dynamic data streams and accordingly adjust or renew their 
prediction models. To address this challenge, adaptive 
learning models are developed, employing drift detection 
methods to pinpoint the instances of drift in changing 
environments [2]. Concept drift is a phenomenon that impacts 
a broad range of applications, recognised and tackled across 
various domains including medicine, industry, education, and 
commerce. For instance, in the medical sector, the 
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forecasting or credit evaluation, traditionally viewed as stable, 
may experience concept drift due to underlying shifts in social 
trends and behaviors. In the realm of industrial monitoring, 
shifts in production processes, service monitoring, or 
consumer actions can lead to concept drift. Likewise, in the 
field of transportation, traffic control systems that utilize data 
mining to assess traffic conditions, such as vehicle density and 
accident rates, need to adapt to concept drift caused by 
seasonal or long-term changes in traffic flows.  

Among the variety of concept drift techniques that have 
been proposed so far, the diversity measure has been used as 
a promising method for detecting concept drifts [4], [5], [6], 
[7], however, there is a necessity for a comparative analysis to 
ascertain their efficiency, identify the most effective approach, 
and delineate a trajectory for their sustained evolution in 
machine learning contexts. In this paper we examine the role 
of the diversity measure in detecting concept drift and 
compare four different ways of using them: DMDDM for drift 
detection in a fully supervised binary classification context 
[4], DMDDM-S in a semi-supervised framework [5], 
DMODD for online drift detection in a fully supervised multi 
classification context [7], and HBBE, a hybrid block-based 
ensemble designed for addressing various forms of concept 
drifts [6].  

This study seeks to explore the following research 
questions: (1) How do different methodologies, such as 
DMDDM in a fully supervised context, DMDDM-S in a semi-
supervised framework, DMODD as online drift detection, and 
HBBE as a hybrid block-based ensemble, utilize diversity 
measures effectively for concept drift detection? (2) In a 
comparative analysis, which method among the four methods 
performs the best in terms of detecting concept drift and 
enhancing model performance? (3) What are the potential 
future directions and research opportunities in using diversity 
measures for concept drift detection? 

To answer these research questions, we present three 
analyses of the four methods, evaluating their effectiveness in 
detecting concept drift and their ability to improve model 
performance.  

The paper is structured as follows: Section II provides an 
overview and notation on concept drift. Section III covers the 
literature review. Section IV discusses diversity measures and 
their role in concept drift detection. Section V presents the 
experimental results and analysis of DMDDM, DMDDM-S, 
DMODD, and HBEE. Finally, Section VI concludes the 
paper. 
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II. CONCEPT DRIFT 

This section presents an overview of concept drift, 
including its definition, origins, varieties, and the 
methodologies for adapting to concept drift  [2], [8].  

A. The Definition of Concept Drift 

Assuming Pt0 denotes the joint probability distribution of 
the input variable x and the target variable y at time t0, and Pt1 
denotes the joint probability distribution of x and y at time t1, 
concept drift is said to occur if Equation (1) is satisfied when 
transitioning from t0 to t1. 

∃𝑥 ∶ 𝑃𝑡0 (𝑥, 𝑦) ≠  𝑃𝑡1(𝑥, 𝑦)                                   (1) 

Currently, the distribution of the underlying data has 
shifted away from concept C1 to a new concept C2. This shift 
is attributed to the dynamics of joint probability Pt(x, y) = Pt(x) 
Pt(y|x), and if Equation (2) is fulfilled as time progresses from 
t0 to t1, a concept drift is observed. Variations in either Pt(x) or 
Pt(y|x) are capable of inducing concept drift. 

∃𝑥 ∶ 𝑃𝑡0 (𝑥)𝑃𝑡0 (𝑥|𝑦) ≠  𝑃𝑡1 (𝑥)𝑃𝑡1 (𝑥|𝑦)                   (2) 

B. The Origins of Concept Drift 

Based on the concept of concept drift and the properties of 
joint probability distributions, it is identified to have three 
primary origins: 

Virtual Concept Drift: when there is a change in the 
probability of x, while the probability of y given x remains 
unchanged, i.e., 𝑃𝑡0 (𝑥) ≠  𝑃𝑡1(𝑥)  and  𝑃𝑡0 (𝑥|𝑦) ≠
 𝑃𝑡1(𝑥|𝑦). This case belongs to virtual concept drift, which 
does not affect its decision boundary and only changes the 
feature space. Real Concept Drift: when the probability of y 
given x undergoes a change, the probability of x remains the 
same, i.e., 𝑃𝑡0 (𝑥|𝑦) ≠  𝑃𝑡1(𝑥|𝑦) and 𝑃𝑡0 (𝑥) =  𝑃𝑡1(𝑥). This 
scenario significantly affects the prediction model, 
representing a genuine concept drift that alters both the feature 
space and its decision-making boundary. Also, in line with 
Bayesian decision theory [9], Equation (3) is derived: 

𝑃(𝑦|𝑥)
𝑃(𝑦) ∗ 𝑃 (𝑥|𝑦)  

𝑃(𝑥)
                                                 (3) 

It is evident that Pt(y) and Pt(x|y) influence Pt(y|x), thereby 
contributing to an indirect real concept drift. The various 
forms of concept drift resulting from distinct causes are 
depicted in Figure 1, where (X1, X2) symbolizes the two-
dimensional feature space, and y denotes the category label. 

C. The Types of Concept Drifts 

Research identifies several patterns in concept changes, as 

depicted in Figure 2. An Sudden Drift occurs when the 

original distribution St is instantly replaced by a new 

distribution St+1 at a specific time t, significantly impairing 

classifier performance. Gradual Drifts involve a slower 

change where examples from distributions St and St+1 

intermingle, with St examples decreasing over time and St+1 

examples increasing. Recurrent Concepts are concepts that 

were active in the past and may reappear after a period of 

absence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. BACKGROUND 

In this section, we review well-known drift detectors from 
previous studies that are highly relevant to our research. 

The Fast Hoeffding Drift Detection Method (FHDDM) 
[10] uses Hoeffding's inequality within a specified window 
size 𝑛 to detect drifts. A drift is indicated if there's a significant 
change between current probabilities and the peak of accurate 
forecasts.  

The Drift Detection Method (DDM) [11] is notable for 
using classifier error to detect drifts. An increase in error and 
training samples may indicate a shift. DDM sets a caution 
threshold, and when error rates reach it, incoming samples are 
placed in a window. If the error rate hits the drift threshold, 
the classifier is reconfigured using these samples.  

The Adaptive Sliding Window (ADWIN) approach [12] 
shifts a window 𝑤 across prediction outcomes, evaluating two 
sub-windows. If a significant difference in their averages is 
detected, ADWIN flags a concept drift and removes elements 
from the window's end until the variation disappears. 

The HDDM_A and HDDM_W tests [13] use Hoeffding's 
bounds to identify drifts. HDDM_A compares moving 
averages, while HDDM_W examines the weight of these 
averages using the EMWA forgetting scheme [14]. The 
creators found that HDDM_A is better for immediate shifts, 
while HDDM_W excels at detecting gradual drifts.  

The PH Test technique [15], used in signal processing for 
drift detection, calculates a cumulative discrepancy between 
observed values and their average up to the present moment 
𝑇, captured by mT. The minimum value of MT,  denoted as MT, 
is updated over time. A significant discrepancy between mT 
and MT indicates a concept drift. 

The SegDrift2 approach [16] uses two storage 
mechanisms: one combines new and old data, while the other 
stores only new entries. It evaluates the mean values in both 
repositories and identifies a concept drift when the 
discrepancy between these means exceeds a predefined 
threshold. 

SEED [17] uses a window approach to compare two sub-
windows. When a significant difference in their averages is 
detected, the earlier segment is discarded. SEED also applies 

Figure 1. Two forms of drift are illustrated with instances shown as differently 

colored circles 

Figure 2. Patterns of Concept Drift. 



Hoeffding's Inequality with the Bonferroni correction to 
determine the test statistic and perform block compression, 
removing unnecessary cut points. 

RDDM [18] was introduced to improve DDM's 
sensitivity. It discards older data points and periodically 
refreshes its statistics for drift detection. The creators noted 
that RDDM often outperforms DDM in accuracy and 
promptness but may result in more false positives and higher 
memory usage. 

EDDM [19] modifies DDM by tracking the distance 
between consecutive errors instead of the error rate. Using the 
same warning system as DDM, EDDM signals drift when the 
gap between sequential errors widens, indicating unstable data 
concepts. 

The Accuracy Updated Ensemble (AUE2) [20] uses an 
online classifier to update individual learning models directly, 
unlike the Adaptive Weighted Ensemble (AWE) which only 
adjusts weights. When no drift is detected, classifiers improve 
as if trained on a single, large dataset, allowing for a reduced 
block size without compromising accuracy. 

Accuracy Weighted Ensemble (AWE) [21] trains a new 
classifier with each incoming data block using static 
algorithms like Naive Bayes, C4.5, or RIPPER. After training, 
the current classifiers are evaluated using mean square error 
on the latest data block. The top 𝑛 classifiers are then selected 
to refresh the ensemble. 

The Dynamic Weighted Majority (DWM) [22] weights 
incremental classifiers based on accuracy after each example. 
For every error, a classifier's weight is reduced by a set factor. 
Periodic evaluations of the ensemble may lead to adding new 
classifiers. However, training on many examples can create 
numerous components, indicating that future work could 
focus on pruning classifiers. 

Learn++.NSE [23] employs a block-based ensemble 
strategy for incremental learning of concept drift. With each 
new data block, it trains a new classifier and uses a 
dynamically weighted majority voting system. The innovation 
lies in calculating voting weights based on the time-adjusted 
accuracy of each classifier across both current and past 
environments. 

IV. DIVERSITY MEASURE AND ITS ROLE FOR CONCEPT 

DRIFT DETECTION 

In non-stationary environments with concept drift, 
methodologies are categorized into Statistical-based, 
Windows-based, and Ensemble-based Methods [2]. 
Statistical-based Methods monitor the learning process by 
observing changes in online error rates, where a significant 
decline in performance indicates concept drift. Windows-
based Methods use a static reference window for historical 
data and a dynamic sliding window for recent data; a 
significant discrepancy between these windows signals 
concept drift. Ensemble-based Methods divide data streams 
into blocks, replacing the least effective ensemble member 
with a new classifier after evaluations, effectively identifying 
gradual drifts while maintaining accuracy. These techniques 
benchmark the efficacy of learning algorithms in managing 
concept drift. 

In ensemble learning with static data, diversity among 
members is crucial. Evaluating diversity provides insights into 
methods fostering it, leading many studies to use diversity as 

a criterion for pruning ensemble components [25-27]. Limited 
efforts have aimed at enhancing diversity; for example, 
research in [27] examines diversity's impact on online 
ensemble learning and modifies the Poisson distribution in 
online bagging to better address concept drift, focusing on 
accuracy rather than diversity. To the authors' knowledge, 
using diversity measures to directly evaluate component 
classifiers and detect drifts is a novel approach, contrasting 
with previous methods that relied on classification accuracy. 
This innovation uses the disagreement measure and the PH 
test to create four distinct algorithms, each with a unique 
objective. The disagreement measure quantifies diversity as 
the proportion of discordant decisions out of total 
observations, reflecting performance variance between two 
classifiers on identical training sets. It indicates how 
classifiers respond differently to data stream changes and is 
one of the simplest diversity indicators [28]. These four 
algorithms, which incorporate diversity measures to adapt to 
drift in dynamic settings, represent a significant shift from 
existing methods, offering rapid drift response with minimal 
time and memory requirements. The following subsections 
(A, B, C, and D) will detail the primary contributions of each 
method. 

A. DMDDM as a Drift Detector in a Fully Supervised Binary 

Classification Context.  

To calculate the diversity between component classifiers 

on a pairwise basis, consider X = x1, . . . , xn as a labeled dataset 

and y′ v = [y′ v (x1), . . . , y′ v (xn)] as an n-dimensional binary 

vector representing the outputs of classifier hv. In this vector, 

y′v (xj) = 1 indicates a correct prediction of the class label by 

hv, and 0 indicates an incorrect prediction. Table 1 showcases 

(referred to as oracle outputs) all possible prediction outcomes 

for a pair of classifiers hu and hv, with the condition that hu = 

hv. Here, Nab denotes the count of instances xj ∈ X where y′u 

(xj) = a and y′v (xj) = b. Consequently, the probability values 

for Nab are outlined as follows: 
• N10 represents the count of instances where classifier Ci forecasts 

class 1 while classifier Cj forecasts class 0. 

• N01 represents the count of instances where classifier Cj forecasts 

class 1 while classifier Ci forecasts class 0. 

• N11 represents the count of instances where both Ci and Cj forecast 

class 1. 

• N00 represents the count of instances where both Ci and Ci forecast 

class 0. 

 
Calculating the diversity between two base classifiers (hu 

and hv) through the disagreement measure is quantified by 
Equation (4): 

𝐷𝑢:𝑣 = 𝑁10 + 𝑁01                          (4) 

The PH test utilizes a variable 𝑚𝑇 to track the cumulative 
differences in observed values e (error estimates). To calculate 
these values in a prequential (incremental with forgetting) 
manner, two primary methods are employed: sliding windows 
and fading factors. The fading factor method is applied across 
the four strategies. This method systematically removes 
outdated information by applying a factor to the previous 
summary, followed by the addition of a new value derived 

Table 1: The association between two classifiers (2 × 2). 

hu = hv  hu corrects (1)  hu incorrect (0) 

hv corrects (1) N11 N10 

hv incorrect (0) N01 N00 



from recent data. Conversely, alternative strategies employ 
sliding windows to maintain a collection of the d most recent 
examples at any given time, thereby constraining the sample 
size for analysis. Consequently, the fading sum 𝑆𝑥,𝛼 and the 

fading increment 𝑁𝛼 at time t for a sequence of objects x are 
computed as follows:  

𝑆𝑥:𝛼(𝑡) = 𝑥𝑡 + 𝛼 +  𝑆𝑥,𝛼 (𝑡 − 1)               (5) 

 
𝑁𝛼(𝑡) = 1 + 𝛼 ∗  𝑁𝛼  (𝑡 − 1)                      (6) 

Then, the fading average is computed at observation i: 

𝑀𝛼(𝑡) =  
𝑆𝛼(𝑡)

𝑁𝛼(𝑡)
                                             (7) 

Per [15], the fading factors method is more efficient in 
terms of time and memory usage than the sliding windows 
technique. Hence, across the four methodologies, the focus is 
on diversity measures observed through the fading factor, 
rather than on error rates. By incorporating the diversity value 
from Equation (4) into Equation (5), we derive the subsequent 
equations. 

𝑆𝑢:𝑣,𝛼(𝑡) = 𝐷𝑢:𝑣 + 𝛼 ∗  𝑆𝑢:𝑣,𝛼 (𝑡 − 1)                (8) 

𝑀𝛼(𝑡) =  
𝑆𝑢:𝑣,𝛼(𝑡)

𝑁𝛼(𝑡)
                                                (9) 

Equation (9) is applicable alongside the PH test for 
tracking the diversity between two classifiers. Through this 
approach, the PH test triggers a drift alert when the predictions 
of the components (hu and hv) begin to diverge in an 
unexpected manner, effectively recognizing a notable rise in 
diversity. Equation (10) is then utilized to compute the 
cumulative difference 𝑚𝑇 , representing the discrepancy 
between observed values and their average up to the present 
time t:  

𝑚𝑇 = ∑(𝑥𝑡 − 𝑥𝑇
− − δ)

𝑇

𝑡=1

                                    (10) 

Where 𝑥𝑇
− =

1

𝑇
 ∑ 𝑥𝑡

𝑡=1 𝑡
 and δ  corresponds to the 

magnitude of changes that are allowed. Additionally, the 
minimum value of this variable is calculated as follows:  

𝑀𝑇 = 𝑚𝑖𝑛(𝑚𝑇 , 𝑡 = 1 … 𝑇)                               (11) 

In the final step, the test observes the disparity between 
𝑀𝑇 and 𝑚𝑇: as follow:  

 𝑃𝐻𝑇 =  𝑚𝑇 − 𝑀𝑇 .                                                     (12) 

Algorithm 1 outlines the DMDDM method from 
reference [6], starting with initial data stream sample 
processing to evaluate classifier predictions (lines 1-3). An 
oracle output table, as shown in Table 1, identifies instances 
(N10 and N01) where classifier pairs produce differing 
outcomes on the same training data xt. The algorithm counts 
occurrences where one classifier is correct and the other is 
incorrect (lines 4-5). The disagreement metric is calculated by 
aggregating these counts and normalizing them against the 
total number of classifiers (line 6). The fading factor technique 
is then applied, calculating the fading sum and increment 
(lines 7-8) and using the diversity score from line 6 as a 
substitute for error predictions from the PH test. The fading 
average is computed in line 9. To monitor classifier pair 
diversity, the PH test (lines 10-13) uses variable mT to evaluate 

the cumulative deviation between the observed diversity 
measure and its average. This test compares the current mT 
value against the lowest recorded MT value to determine if the 
difference exceeds a threshold, indicating a drift. 

B.  DMDDM-S as a Drift Detector in a Semi-Supervised 

Binary Classification Context.  

DMDDM-S [5] builds upon the concept of DMDDM by 
addressing situations where class labels for the incoming data 
stream are unavailable, particularly in the context of concept 
drift challenges. In a binary classification scenario involving 
a pair of classifiers, each component can predict an example 
as either 0 (negative class) or 1 (positive class). By analyzing 
the predictions from each classifier, we can determine the 
level of disagreement between their predictions. Thus, this 
method focuses on quantifying the discrepancy in predictions 
between pairs of classifiers without considering the actual 
class labels.  

The DMDDM strategy initially detects concept drift in a 
semi-supervised setting (DMDDM-S), identifying 
disagreements in binary classification without actual labels. 
This new drift detection mechanism also identifies abrupt 
drifts in scenarios without class labels. To our knowledge, this 
is the first attempt to use such a method for concept drift 
detection. Additionally, we integrate k-prototype clustering to 
label unlabelled data and retrain the model with both new and 
previous labels to match the current concept. Our findings 
show that this drift detector, even with only 50% labelled data, 
identifies drifts more quickly and efficiently in terms of 
runtime and memory compared to traditional fully labelled 
methods.  

Algorithm 2 introduces the DMDDM-S technique, which 
begins by processing each data stream example to get 
predictions from two classifiers (line 1). It identifies instances 
where these classifiers disagree and tallies cases where one is 
correct, and the other is incorrect (lines 1-3). Using a 
disagreement measure combined with the PH test, it detects 
concept drift (line 5). The disagreement measure is calculated 
by summing these observations and dividing by the total 
number of classifiers. 



 The fading factor method is then applied (lines 6-8), with 
the diversity value replacing error estimates from the original 
PH test. The modified PH test tracks classifier pair diversity 
(lines 9-13) using variable mT to measure the disparity 
between the observed diversity and its average. A drift is 
indicated if the difference between mT and the minimum MT 
exceeds a threshold. Upon drift detection, the algorithm labels 
current unlabelled data for model retraining, maintaining 
accuracy. It merges windows of labelled (Wld) and unlabelled 
data (Wuld) using K-prototype clustering. After drift detection, 
the drift detector is evaluated (lines 14-15), and the model is 
incrementally trained with newly labelled data (Nld) (line 16). 
If the labelled data window (Wld) reaches a predefined size, 
the oldest data is replaced with new data; otherwise, xt is added 
to (Wld). 

C. DMODD as an Online Drift Detector in a Fully 

Supervised K-Class Problem Context. 

Initially, for binary classification (DMDDM, DMDDM-
S), the disagreement measure Dv,u (Eq. 1) was used. However, 
for multi-label classification, Table 1's method for 
distinguishing discrepancies between classifier pairs that 
misclassify the same instance with different labels is 
ineffective. This study refines the approach to track precise 
classifier predictions beyond binary correct/incorrect 
assessments. We introduce a contingency table Ci,j, which 

records instances x ∈  X where classifier hv(x) = i and 

classifier hu(x), as shown in Table 2 for multi-label issues. 
Aligned classifier pair decisions are cataloged along the 
diagonal of Ci,j. Eq. 13 calculates their similarity by summing 
these diagonal values and dividing by the total instance count 
n. To indicate potential drifts, we apply the PH test, as 
described in Eq 10 and 12 from our preliminary findings.  

 

 

 

 

A drift is suggested when this disparity exceeds a 
predetermined threshold (λ). 

ɵ =
1

𝑛
∑(𝐶𝑖,𝑗)

𝐾

𝑖=0

                                                             (13) 

The DMODD, referenced in [7] and detailed in Algorithm 
3, processes data stream examples and evaluates classifier 
predictions. It uses a contingency table to tally diverging 
classifier decisions (lines 1-3). This approach aggregates and 
normalizes these tallies by the total instance count (lines 4-5). 
It then calculates the fading sum, increment, and average 
(lines 6-8). The method tracks classifier diversity using the PH 
test to monitor cumulative variation (lines 9-14). A drift is 
identified and addressed when the disparity between current 
and minimum cumulative variations exceeds a threshold. The 
algorithm concludes with the incremental model update (line 
15), keeping it responsive to new data and identified drifts. 

D.  HBBE is a Hybrid Block-Based Ensemble designed to 

address different types of concept drifts.  

The examination of block-based ensembles and drift 
detection strategies enhances understanding of adaptive 
block-based ensembles and online drift detection, specifically 
their mechanisms for responding to concept drift. 
Consequently, a Hybrid Block-Based Ensemble (HBBE) 
framework has been developed and empirically proven [6]. 
This model outperforms other leading adaptive learning 
algorithms in predictive accuracy across various scenarios, 
including sudden, gradual, recurring, and multi-class 
challenges. HBBE merges an online drift detector (DMODD), 
tailored for K-class problems and capable of real-time 
processing, with block-based weighting to effectively address 
diverse forms of drifts. The operational mechanism of the 
block-based ensemble framework is characterized as follows: 
(1) An Online Drift Detector, tailored for K-class problems, 
processes data instance by instance to promptly enhance the 
ensemble's responsiveness to sudden drifts. (2) In a Block-
Based manner, following every d examples, an evaluation is 
conducted alongside incremental updates to the ensemble's 
components, plus the integration of a new component. This 
process is aimed at bolstering the ensemble's ability to adapt 
to gradual drifts. (3) Upon drift detection by the online 

Table 2. Output of a Pair of Classifiers for the Multi-class Problem 



detector, a new classifier (nominee) is constructed using the 
latest instances. This nominee is weighted and incorporated 
into the ensemble based on a specific criterion 𝜃(). Post-drift, 
existing components of the ensemble are re-adjusted in terms 
of their weight. (4) During periods of stability, where no drifts 
are identified, the framework operates akin to a conventional 
block-based ensemble. (5) The decision outputs from both the 
online drift detector and batch learners are amalgamated 
through a weighted majority vote, employing a measure of 
suitability to guide the weighting. 

Algorithm 4 integrates a block-based ensemble with an 
online drift detector. It processes data stream examples one at 
a time (line 1) and accumulates them in a buffer with a defined 
capacity d (line 2). The online drift detector from Algorithm 1 
is then applied (line 3). Upon detecting a drift or when the 
buffer is full, a new classifier is built using the latest buffer 
examples and assigned a weight (line 4). Weights are assigned 
to all ensemble components based on the buffer (line 5). 

If the ensemble has fewer than k classifiers, the new 
classifier is added (lines 7-8); if it already has k classifiers, the 
least effective one is replaced (lines 9-10). This method 
swiftly adapts to sudden and gradual changes in the data 
stream. 

V. RESULTS AND ANALYSIS. 

The performance of the four methods (DMDDM, 
DMDDM-S, DMODD, and HBBE) is evaluated through 
experiments using various concept drift detection methods 
like FHDDM, DDM, ADWIN, Wtest, PH Test, SeqDrift, 
Atest, STEPD, SEED, RDDM, and EDDM. Additionally, 
HBBE is compared with ensemble approaches such as AUE2, 
AWE, DWM, and Learn++.NSE. For full details of the 
literature and experiments settings of each method refer to the 
original works in [29].The following section details these 
experiments, evaluations, and findings. In addition, Table 3 
shows the abbreviations of the measures that will be used 
during the analysis. To simplify the comparative analysis of 
each method, we will use the Weighted Sum Model (WSM), 
a multi-criteria decision-making method [30], [31]. WSM 
involves transforming and weighting each metric, then 
summing them to create a single score for each method. This 

score will represent the balance between all metrics and will 
be visualized using a bar chart. 

The process includes: 

• Normalizing each metric between 0 and 1. 

• Assigning weights to each metric based on importance.  

• Computing a single score for each method. 

 

The method with the longest bar on the chart offers the 

best balance across metrics, with longer bars indicating better 

overall performance. This visualization helps easily identify 

which method optimally balances all the metrics. 

A. RQ1 

To address RQ1, we must evaluate each method in relation 
to its counterparts. The next paragraphs show the results of the 
experiments and the  analyses of each drift detector. 

In the comparative visualization across the SEA and Sine1 
datasets, detectors exhibit varied performance, as shown in 
Figure. 3. DMDDM stands out, particularly in Average True 
Detection (ATD) and Average False Negative (AFN) metrics, 
consistently scoring optimally. It ensures swift event 
detection, with low Average Delay Detection (ADD) values, 
especially in the SEA dataset. However, DMDDM shows a 
relatively higher Average False Alarm (AFA) in SEA, 
indicating a need to reduce false alerts. Other detectors like 
FHDDM and ADWIN show trade-offs between true detection 
and false alarms. For instance, ADWIN maintains a low ADD 
in Sine1 but has higher false alarms, impacting overall 
accuracy. 

DMDDM achieves the highest Weighted Sum Model 
(WSM) scores, indicating balanced performance across all 
metrics, as shown in Figure 4. Its lower ADD and minimal 
false alarms/negatives (AFA and AFN) contribute 
significantly to this superior score. While DMDDM excels in 
rapid, accurate change detection, methods like FHDDM and 
Atest also perform well, especially in the Sine1 dataset, 
highlighting their potential in specific contexts. Conversely, 
ADWIN and PH Test generally reflect lower WSM scores, 
suggesting areas for improvement in detection speed, 
accuracy, or resource efficiency. Optimizing these models 
could enhance their applicability across varied data-streaming 
environments. 

The visualization provides a comparative analysis of 
various drift detectors, including DMDDM-S, across the 
Sine1 and Mixed datasets. Figure 5 shows that DMDDM-S 
consistently performs well across most metrics, demonstrating 
robustness in diverse contexts. It has the lowest detection 
delay and minimal memory usage, making it suitable for real-

Table 3: Abbreviations of Measures Used 



time applications with memory constraints. Although SEED 
and FHDDM also show low delay, DMDDM-S stands out for 
its balance between low delay and memory efficiency, 
optimizing computational resources. While SEED excels in 
Mean Accuracy, DMDDM-S has notable accuracy, especially 
in the Sine1 dataset. This balanced performance highlights 
DMDDM-S's viability as a drift detector, offering timely 
detection, memory efficiency, and good accuracy for dynamic 
environments. Further examination of specific use cases will 
enhance understanding of DMDDM-S's applicability. Figure 
6 shows that DMDDM-S consistently achieves the highest 
WSM scores across both datasets, due to its low delay, 
efficient time usage, and commendable accuracy.  

DMDDM-S stands out for its efficient performance with 
low memory usage, balancing computational resources. While 
methods like SEED and RDDM perform well, particularly on 
the Sine1 dataset, they require more memory. PHTest and 
EDDM, on the other hand, show lower overall performance in 
terms of accuracy, delay, and time. Figure 7 compares drift 
detectors, with DMODD excelling in detection delay (ADD) 
across both the Wave and SEA datasets, showcasing its quick 
and efficient drift detection. datasets, indicating its efficiency 
in identifying concept drifts promptly. 

Although DMODD does not lead in accuracy (ACC), its 
balanced performance across metrics, especially in 
minimizing DRMS and MUB, highlights its efficiency. While 

Figure 5. Comparison of detectors including DMDDM-S. 

Figure 4. Comparison of detectors including DMDDM.   

Figure 3. The balanced score for each method including DMDDM. 

Figure 6. The balanced score for each method including DMDDM-S. 

Figure 7. Comparison of detectors including DMODD. 

Figure 8. The balanced score for each drift method 



Figure 11. The WSM balanced score for each of the four diversity 

measures. 

detectors like MDDM-A also show low ADD in the Wave 
dataset, DMODD consistently performs well across both 
datasets, demonstrating its reliability. 

Figure 8 shows that DMODD achieves a strong balance 
across all metrics in the SEA dataset, excelling in detection 
speed, runtime, memory efficiency, and accuracy. It remains 
competitive in the Wave dataset, showcasing its adaptability. 

Figure 9 evaluates AUE2, DWM, HBBE, AWE, NSE, and 
DWM across multiple datasets. HBBE consistently shows 
strong accuracy, especially in the Wave and SEA datasets, 
indicating its reliable predictive capabilities. 

 However, it consumes more runtime and memory, 
particularly in the 'Airline' dataset. DWM consistently uses 
less memory and has a more favorable runtime, though 
sometimes at the cost of accuracy. NSE exhibits high runtime 
and memory usage in certain datasets like 'RBFGR', making it 
less suitable for scenarios with limited resources. Thus, HBBE 
is robust in accuracy but requires careful consideration due to 
its computational demands.  

Figure 10 shows the Weighted Sum Model (WSM) scores 
for the five algorithms across multiple datasets. HBBE, with a 
WSM score of 0.550, demonstrates balanced performance in 
accuracy, runtime, and memory usage, making it suitable for 
varied contexts. DWM excels with the highest WSM score of 
0.930, indicating an optimal balance. Conversely, NSE, with 
the lowest WSM score, may need optimization or could be 
used in specific scenarios where its strengths are 
advantageous. For specific metric-driven decisions, a deeper 
analysis of individual performances is essential. 

Each methodology uses diversity measures uniquely for 
concept drift detection. DMDDM excels in fully supervised 
environments, offering high precision and efficiency, 
especially with significant drifts, and maintains high WSM 
scores in binary classification. DMDDM-S, ideal for semi-
supervised settings, balances accuracy and resource use, 
performing well with limited labeled data. HBBE, tailored for 
multi-class challenges, adapts to various drift types and 
delivers exceptional accuracy but requires careful 
consideration of runtime and memory in resource-limited 
environments. Overall, each method shows distinct strengths 
and adaptability in detecting concept drift across different 
scenarios. 

 

 

 

B. RQ2 

To address RQ2, the comparative bar chart shows diverse 
WSM scores for DMDDM, DMDDM-S, DMODD, and 
HBBE across different datasets and scenarios. Figure 11 
provides a succinct yet contextually varied overview of the 
algorithms' performances, requiring nuanced interpretation. 

DMODD, with a WSM score of 20.72, appears to 
outperform the others, indicating a superior balance of 
accuracy, runtime, and memory usage. However, it's 
important to note that the scores originate from different 
analyses, potentially involving varied metrics and weights. 
Both DMDDM-S and HBBE have WSM scores of 0.55, 
reflecting similar balanced performances, while DMDDM has 
a score of 0.30, trailing slightly. This highlights the need to 
consider specific analytical contexts when interpreting these 
scores and deploying algorithms, ensuring alignment with the 
data's demands and characteristics.  

 

 

 

 

  

 

 

 

 

 

C. RQ3 

To address RQ3, this subsection discusses the advantages, 
assumptions, and constraints of using diversity measures for 
concept drift handling. 

The diversity measure is efficient in computational time 
and memory, relying on fewer variables compared to sliding 
window methods, which reduces memory use and update 
times. Most drift detectors operate with constant time 
complexity, but exceptions like ADWIN and SeqDrift have 
logarithmic complexity. However, the diversity measure has a 
higher false alarm rate due to parameter sensitivity. In 
DMDDM, increasing γ (100-200-300) reduces false alarms 
but may delay or miss changes, balancing between 
minimizing false alarms and avoiding delays. Despite higher 
detection delays, DMDDM has low time and memory 
requirements, thanks to the PH test. This could be improved 
by using dual fading factors or integrating fuzzy decision-

Figure 9. Comparison of detectors including HBBE. 

Figure 10. The balanced score for each drift detection method. 



making for more nuanced detection. HBBE excels in 
accuracy, particularly in sudden drifts, though its runtime 
performance is affected by ensemble handling. Future 
research could focus on: 

• Integrating drift detection in IDS for dynamic model 

adjustments in anomaly detection [32]. 

• Enhancing drift detection in Big Data to improve accuracy 

while reducing computational demands [33]. 

• Developing scalable drift detection methods for IoT, 

focusing on distributed algorithms for real-time processing 

[34]. 

These areas highlight the potential for further research and 

improvement in drift detection methodologies. 

 

VI. CONCLUSION 

Diversity measures provide adaptability to various drift 
types and robustness across datasets, making them effective 
and reliable for detecting concept drift. They offer a balanced 
combination of accuracy, adaptability, and resource 
efficiency, making them a preferred choice in scenarios 
requiring an understanding of evolving data patterns. The 
Weighted Sum Model (WSM) scores show that algorithms 
using diversity measures, like DMDDM, perform well in 
terms of accuracy, runtime, and memory usage, especially in 
binary classification. 
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