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Abstract— Concept Drift is a challenging problem in data 

streaming, where the underlying data distribution changes over 

time. Numerous algorithms have been proposed to address this 

issue, each evaluated using various metrics such as accuracy, 

runtime, and false alarms. However, a comprehensive 

evaluation that simultaneously considers all these metrics is 

lacking. Motivated by this gap, our paper systematically 

benchmarks eleven leading concept drift detection algorithms 

using a Multi-Criteria Decision-Making (MCDM) approach to 

identify the best-performing methods. We employ four datasets 

and seven performance measures: Average Delay Detection 

(ADD), Average True Detection (ATD), Average False Alarm 

(AFA), Average False Negative (AFN), Average Detection 

Runtime in milliseconds (ARMS), Average Memory Usage in 

bytes (MUB), and Average Accuracy. Our experimental 

evaluation and comparison are conducted against eleven 

existing detectors. The results show that our approach provides 

a balanced and comprehensive assessment, offering a significant 

advancement in the evaluation of concept drift detection 

methods. This paper provides a holistic strategy that integrates 

multiple performance metrics to enhance timely and efficient 

detection in various applications. 

Keywords— Concept drift, data stream, non-stationary 

environments, multi-criteria Decision-Making (MCDM), big data 

applications

I. INTRODUCTION

time point (Di) to differ from another (Dj). As a result, the 
concepts associated with these points become unstable, and 
the model struggles to accurately predict the most recent data 
distribution. Consequently, a key task in streaming data 
analytics is detecting significant changes in the incoming data 
[2], [4].

A real-world example of concept drift can be observed in 
customer behaviour within an online shop, where customer 
preferences evolve over time. For instance, a predictive model 
designed to forecast weekly sales might initially perform well. 
However, factors such as promotional activities and 
advertising expenditure, which influence sales, could lead to a 
gradual decrease in the model's accuracy—signalling the 
occurrence of concept drift. Additionally, seasonal variations 
in sales can contribute to concept drift, as shopping patterns 
shift, for example, with higher sales during the winter holidays 

compared to the summer. Moreover, any predictive model 
created before the COVID-19 pandemic that assumes a fixed 
relationship between inputs and outputs would likely perform 
poorly due to changes in underlying data patterns.

In the context of mining data streams affected by concept 
drift, approaches are generally classified as either active 
(trigger-based) or passive (evolving) [1], [5]. Active 
approaches focus on detecting concept drift using various 
detectors and updating the model when drift is detected. In 
contrast, passive approaches continuously update the model as 
new data arrives, regardless of whether drift is occurring. 
Despite their different methods, both approaches aim to keep 
the model current and accurate.

Current drift detection methods [6], [7], [8], [9], [10], [11]
employ various performance metrics to evaluate and compare 
the effectiveness of different detectors, including accuracy, 
runtime, and false alarm rate [2], [5]. For example, certain 
detectors may achieve high accuracy but require substantial 
memory, while others may detect drift effectively but have 
long execution times. This scenario raises a critical question: 
which performance metric should be prioritized to determine 
the superiority of one detector over another? Should the 
evaluation be based on accuracy, runtime, false alarm rate, or 
another metric? Thus, this study aims to address the following 
research question:

Classifying data streams is a complex task due to three •
primary characteristics: speed, size, and variability [1]. Speed 
and size are particularly challenging because they impose 
constraints on memory and processing time, requiring 
learning algorithms to temporarily store incoming data and 
process it only once. The most critical challenge, however, is 
variability, which refers to the dynamic nature of data streams. 
This variability often leads to what is known as concept drift 
[2], [3]. Concept drift occurs when the class labels of a dataset 
change over time, causing the underlying distribution at one 

Research Question: How can the performance of concept 
drift detection algorithms be comprehensively evaluated 
using multiple performance metrics to identify the most 
effective methods for timely and efficient detection in 
online data streams?

To address the research question, this study proposes an 
approach that comprehensively considers all performance 
metrics simultaneously to evaluate the performance of drift 
detectors. A rigorous empirical evaluation will be undertaken, 
comparing eleven of the existing drift detectors using four 
synthetic data streams and seven performance metrics, 
namely: Average Delay Detection (ADD), Average True 
Detection (ATD), Average False Alarm (AFA), Average 
False Negative (AFN), Average Detection Runtime in 
milliseconds (ARMS), Average Memory Usage in bytes 
(MUB), and Average Accuracy. Each metric will be 
transformed and weighted, then summed to create a single 
score for each method. This score will represent the balance 
among all metrics. We can then visualize this score for each 
approach using a simple bar chart.

The structure of this paper is as follows: Section 2 
provides a review of relevant literature. Section 3 details the 
proposed framework for multi-label classification. The results 
of our experimental evaluation, along with comparisons to 
existing studies, are discussed in Section 4. Lastly, Section 5 
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presents our conclusions and suggests avenues for future 
research. 

II. LITERATURE REVIEW 

Concept drift detection has been a pivotal area of research 
in the field of data stream mining. Numerous algorithms have 
been developed to tackle the challenges posed by evolving 
data streams. This section reviews prominent drift detectors 
from past studies, highlighting their methodologies and 
effectiveness. 

A. Drift Detection Method (DDM) 

The Drift Detection Method (DDM) [6] is a widely 
recognized technique that relies on monitoring the error rate 
of a classifier. DDM sets a cautionary threshold based on 
classifier error; if this threshold is exceeded, the method 
isolates incoming samples in a specific window. Should the 
error rate reach a predetermined drift threshold, the classifier 
is reconfigured using the samples from this window. This 
method effectively detects sudden drifts by focusing on abrupt 
changes in error rates. 

B. Diversity Measure as a New Drift Detection Method 

(DMDDM) 

The Diversity Measure as a New Drift Detection Method 
(DMDDM) [12] is a novel approach designed to detect 
concept drift in data streams efficiently. Unlike traditional 
methods that monitor error rates, DMDDM uses the 
disagreement measure between pairs of classifiers combined 
with the Page-Hinkley test to detect drifts quickly, with 
minimal memory and processing time. The method is 
particularly effective in handling sudden or abrupt drifts in 
binary classification problems. Experimental results 
demonstrate that DMDDM outperforms several existing 
methods in terms of detection speed, runtime efficiency, and 
memory usage. 

C. Adaptive Sliding Window (ADWIN) 

The ADWIN, or Adaptive Sliding Window approach [13], 
uses two sub-windows within a shifting window to detect 
concept drift. If a significant difference in the averages of 
these sub-windows is observed, ADWIN flags a concept drift 
and removes elements from the window's end until the 
significant difference disappears. This method is notable for 
its ability to adjust the window size dynamically, making it 
sensitive to changes in the data distribution. 

D. Fast Hoeffding Drift Detection Method (FHDDM) 

FHDDM leverages Hoeffding’s inequality to detect drifts 
within a specified window size[8]. It identifies drift by 
monitoring significant changes between current probabilities 
and the peak of accurate forecasts. FHDDM is effective in 
identifying drifts by statistically bounding the probability of 
changes, making it reliable for quick detection. 

E. McDiarmid Drift Detection Methods (MDDM) 

MDDM-A, MDDM-G, and MDDM-E [10] utilize 
McDiarmid’s inequality to detect drifts. These methods apply 
a fixed-size window over predictive outcomes, assigning a 
value of 1 for accurate predictions and 0 otherwise. The 
weighted average and peak weighted average within this 
window are calculated, with significant discrepancies 
indicating drift. These variations of MDDM are adept at 
capturing different types of drift, from abrupt to gradual. 

F. PH Test 

The PH Test, often used in signal processing, calculates 
the cumulative discrepancy between observed values and their 
average up to the present [14]. It identifies drift by noting 
significant discrepancies between cumulative discrepancies 
and their minimum values over time. This method is versatile 
and effective in various applications, particularly in detecting 
both abrupt and gradual drifts. 

G. Hoeffding’s Bounds Drift Detection (HDDM) 

HDDM_A and HDDM_W test [15] use Hoeffding’s 
bounds for drift detection, with HDDM_A comparing moving 
averages and HDDM_W examining weighted averages. The 
weighting process uses an Exponentially Weighted Moving 
Average (EWMA) forgetting scheme [16] , which adapts to 
immediate and gradual shifts respectively. These methods 
provide flexibility in handling different drift rates and types. 

H. Segmented Drift Detection (SegDrift2) 

SegDrift2[11]utilizes two storage mechanisms for 
incoming data, one combining new and old data, and the other 
exclusively housing new entries. By comparing the mean 
values of these repositories, SegDrift2 detects drift when a 
predefined threshold is exceeded. This method is effective in 
distinguishing between short-term fluctuations and long-term 
drifts. 

III. METHODOLOGY 

The primary goal of this study is to benchmark eleven 
leading concept drift detection algorithms using a Multi-
Criteria Decision-Making (MCDM) approach [17], [18], [19]. 
This section outlines the methodology used for the evaluation, 
including the datasets, performance metrics, and the MCDM 
framework. 

In general, consider an MCDA problem involving 𝑚 
alternatives and 𝑛 decision criteria. Assume that all criteria are 
benefit criteria, meaning that higher values are preferable. Let 
𝑤𝑗 represent the relative importance weight of criterion 𝐶𝑗 and 
let aij indicate the performance value of alternative Ai with 
respect to criterion 𝐶𝑗. The overall importance of alternative 
𝐴𝑖, referred to as the Ai

WSM-score, when all criteria are 
considered simultaneously, is defined as follows: 

A𝑖
WSM−score  = ∑ 𝜔𝑗𝑎𝑖,𝑗 ,   𝑓𝑜𝑟 𝑖 = 1,2,3, … , 𝑚.

𝑛

𝑗=1

 

Consider a straightforward numerical example where a 
decision problem involves three alternative options, A, B, and 
C, each evaluated based on four criteria: C1, C2, C3, C4. The 
corresponding numerical data for this problem is presented in 
the following decision matrix: 

Table1: Decision Matrix 

 Criteria WSM 
SCORE C1 C2 C3 C4 

Weighting 0.40 0.30 0.20 0.10 - 

Supplier A: 8 7 9 6 7.7 

Supplier B: 7 8 8 7 7.5 

Supplier C: 6 9 7 8 7.3 

 
An organization needs to select a supplier based on four 

criteria: cost, quality, delivery time, and service. The weights 
assigned to these criteria, based on their relative importance, 
are 0.40, 0.30, 0.20, and 0.10, respectively. The organization 



evaluates three suppliers (A, B, and C) and assigns scores to 
each based on the criteria (on a scale of 1 to 10): 

The weighted scores are calculated as follows: 

• Supplier A: (80.40) + (70.30) + (90.20) + (60.10) = 3.2 

+ 2.1 + 1.8 + 0.6 = 7.7 

• Supplier B: (70.40) + (80.30) + (80.20) + (70.10) = 2.8 

+ 2.4 + 1.6 + 0.7 = 7.5 

• Supplier C: (60.40) + (90.30) + (70.20) + (80.10) = 2.4 

+ 2.7 + 1.4 + 0.8 = 7.3 

Based on the WSM, Supplier A, with the highest total 
score of 7.7, is deemed the most suitable choice for the 
organization. This example elucidates the practical 
application of the Weighted Sum Model, demonstrating its 
simplicity and effectiveness in facilitating well-informed and 
objective decision-making. 

A. Multi-Criteria Decision-Making (MCDM) Framework 

To identify the best-performing algorithm, we utilized a 
Multi-Criteria Decision-Making (MCDM) framework. 
MCDM is a powerful tool for evaluating multiple competing 
criteria, providing a balanced assessment across different 
performance aspects. 

The overall process consists of the following steps: 

1. Criteria Identification: Identify all relevant criteria 

that influence the decision-making process. 

2. Weight Assignment: Assign a weight to each 

criterion to reflect its significance in the overall 

decision. 

3. Scoring Alternatives: Evaluate each alternative by 

scoring them against all identified criteria based on 

their performance. 

4. Weighted Sum Calculation: Calculate the total 

score for each alternative by multiplying each 

criterion’s score by its assigned weight and summing 

the results. 

5. Decision Making: The alternative with the highest 

total score is selected as the optimal choice. 
The weighting process is also a crucial element of the 

WSM, as it directly impacts the decision outcome. The steps 
involved in this process are as follows:  

• Determining Importance: Establish the relative 

importance of each criterion. This can be achieved 

using methods such as expert judgment, surveys, or 

statistical techniques. 

• Normalization: Normalize the weights so that they 

sum to one, ensuring consistency and comparability 

across criteria. 

• Assigning Weights: Based on their determined 

importance, assign a numerical weight to each 

criterion. For example, if the relative importance of 

four criteria is assessed as 30%, 25%, 20%, and 25%, 

the corresponding weights would be 0.30, 0.25, 0.20, 

and 0.25, respectively. 

• Consistency Check: Conduct a consistency check 

on the assigned weights to avoid biases or errors that 

could distort the final decision. 

A. Datasets 

Four synthetic datasets were selected and used to evaluate 
the eleven drift detection methods. These datasets SEA, Sine1, 
Mixed, and AGRAWAL were created using the MOA 
(Massive Online Analysis) tool [20]. The primary benefit of 
using synthetic datasets is their ability to accurately identify 
the true location of drifts within a data stream. The 
specifications of these datasets are: 

1.  Mixed (with abrupt concept drift): this dataset includes 

two numerical variables, x and y, ranging from 0 to 1, and 

two boolean attributes, v and w. A data point is labeled 

positive if at least two of these conditions are met: v, w, 

or y < 0.5 + 0.3 * sin(3πx). When drift occurs, the 

classification rules are reversed. 

2.   Sine1 (with abrupt concept drift): This dataset includes 

two features, x and y, evenly distributed between 0 and 1. 

Classification is based on y = sin(x), with points below 

the curve labeled positive and those above negative. 

When drift happens, class labels are reversed. 

3.  AGRAWAL Generator (AGR): we use the AGR 

generator to generate 100,000 instances with multiple 

sudden drifts. We use the AGR generator to generate 

three drifts every 25,000 instances. 

4.  SEA: was used to create 100,000 data instances, 

simulating an abrupt concept drift. The 

ConceptDriftStream class manages the drift, with 

SEAGenerator -f 3 representing the current concept and 

SEAGenerator -f 2 representing the new concept. The 

drift occurs at position 10k within the data, with a 

specified width. 

B. Performance Metrics 

We employed Seven performance metrics to provide a 
comprehensive evaluation of the concept drift detection 
algorithms: 

Average Delay Detection (ADD): Measures the time taken 

by the algorithm to detect a concept drift after it occurs. 

Average True Detection (ATD): Quantifies the rate at which 

true drifts are correctly identified by the algorithm. 

Average False Alarm (AFA): Counts the number of false 

alarms raised by the algorithm when no drift has occurred. 

Average False Negative (AFN): Measures the rate at which 

the algorithm fails to detect actual drifts. 

Average Detection Runtime in milliseconds (ARMS): 

Evaluates the computational efficiency of the algorithm in 

terms of detection time. 

Average Memory Usage in bytes (MUB): Assesses the 

memory consumption of the algorithm during the detection 

process. 

Average Accuracy: Measures the percentage of correct 

predictions overall. 

 

C. Experimental Setup 

All algorithms were implemented in Java using the MOA 
framework [20]. The experiments were run on a machine 
equipped with an Intel Core i7 processor @ 3.4 GHz, 16 GB 
of RAM, and Windows 10. To ensure a fair and meaningful 
comparison, identical parameter values were used for all 
algorithms. 



IV. RESULTS AND ANALYSIS 

This section presents the results of the evaluation of the 
eleven concept drift detection algorithms across the four 
datasets (Mixed, Sine1, AGR, and SEA). The results are 
analysed based on the evaluation metrics discussed in the 
Methodology section, and the implications of these findings 
are discussed in detail. The evaluation metrics, including 
Average Delay Detection (ADD), Average True Detection 
(ATD), Average False Alarm (AFA), Average False Negative 
(AFN), Average Detection Runtime in milliseconds (ARMS), 
Average Memory Usage in bytes (MUB), and average 
accuracy, provide a comprehensive view of the performance 
of each algorithm. The scores for each algorithm across all 
datasets are summarized in Figures 1-4. 

Figures 1-4 illustrate the balanced score of each drift 
detection method based on seven key metrics. The 
performance variations among the detection methods across 
the datasets are clearly visible. The length of each bar 
represents the score, with longer bars indicating a more 
balanced performance across all metrics. Methods at the top 
of the chart exhibit the best-balanced scores. This 
visualization allows us to easily determine which method 
achieves the most optimal balance across the four metrics, 
with the method having the longest bar demonstrating the best 
overall balance. 

A. Performance Overview 

The Weighted Sum Model results for the Mixed and Sine1 
datasets provide insightful evaluations of various drift 
detection methods across critical performance metrics. In the 
Mixed Dataset, DMDMM and SeqDrift emerge as the leading 
methods, demonstrating their ability to effectively balance 
rapid drift detection, efficient processing time, and accuracy. 
These methods' consistent top scores make them strong 
candidates for scenarios requiring a well-rounded approach to 
concept drift management. In contrast, the Sine1 Dataset 
presents a slightly more competitive environment. While 
DMDMM and SeqDrift maintain their high performance, 
ADWIN also displays notable effectiveness, resulting in a 
more diverse distribution of scores. Nevertheless, DMDMM’s 
and SeqDrift’s consistent superiority across both datasets 
highlights their versatility and reliability. These methods' 
ability to consistently perform well, regardless of the dataset's 
characteristics, underscores their robustness and suitability for 
a wide range of drift detection applications. 

Similarly, the AGR and SEA datasets showcase the 
adaptability of different drift detection methods under varying 
data conditions. In the AGR Dataset, ADWIN takes the lead, 
demonstrating its proficiency in balancing detection speed, 
memory usage, and accuracy, making it particularly suited for  

data scenarios with similar characteristics. SeqDrift and 
DMDMM follow closely, reaffirming their strong 
performance in different contexts. Meanwhile, in the SEA 
Dataset, DMDMM and SeqDrift once again dominate, 
reinforcing their status as top-tier methods. ADWIN also 
remains a strong contender, underscoring its consistency 
across datasets. This analysis reveals that while certain 
methods excel in specific datasets, DMDMM and SeqDrift 
consistently prove to be reliable choices across various 
scenarios, offering a robust solution for diverse drift detection 
challenges. Their balanced performance across the AGR and 
SEA datasets exemplifies their capability to adapt to different 
data dynamics effectively. 

 

Fig. 1. Balanced scores for each drift detection method based on seven 

metrics using the Mixed dataset. 

Fig. 3.  Balanced scores for each drift detection method based on five 

metrics using the AGR dataset. 

Fig. 4.  Balanced scores for each drift detection method based on seven 

metrics using the SEA dataset. 

Fig. 2.  Balanced scores for each drift detection method based on seven 

metrics using the Sine1 dataset. 



B. Detailed Analysis 

Figures 5-8 illustrate the performance of eleven concept 
drift detection algorithms across three different datasets. Each 
figure compares the algorithms based on key metrics, 
including ADD, ATD, AFA, AFN, DRMS, MUB, and 
Average Accuracy. 

1) Average Delay Detection (ADD) 
 DMDDM demonstrates consistently low ADD across all 

datasets, making it one of the fastest detectors. In contrast, PH 
Test and SeqDrift have significantly higher ADD, particularly 
in the SEA and Mixed datasets, which implies slower response 
times. DDM also shows high ADD in some datasets, 
indicating delayed detection, especially in the SEA and AGR 
datasets. 

2) Average True Detection (ATD) 
 ATD is generally consistent across all detectors, with 

most showing stable performance. DDM tends to have lower 
ATD in the Sine1 and SEA datasets, suggesting it may 
struggle with certain data types. DMDDM and FHDDM 
maintain high ATD across all datasets, indicating reliable 
detection accuracy, while SeqDrift and PH Test show 
variability. 

3) Average False Alarm (AFA)  
AFA is low across most detectors, indicating a minimal 

occurrence of false alarms. SeqDrift consistently shows zero 
false alarms, which is ideal. However, DDM and PH Test 
exhibit slightly higher AFA in some datasets, particularly in 
Sine1 and SEA, indicating more frequent false positives, 
which could affect overall accuracy and reliability. 

4) and Average False Negative (AFN) 
 AFN is generally low across all detectors, suggesting 

effective detection capabilities. However, DDM and PH Test 
show higher AFN in the Sine1 and SEA datasets, indicating a 
higher rate of missed detections. DMDDM and Wtest 
maintain low AFN across all datasets, highlighting their 
reliability in detecting true positives with minimal false 
negatives. 

5) Average Detection Runtime (DRMS) 
SeqDrift exhibits the highest DRMS across all datasets, 

indicating it is less efficient and has a longer detection 
runtime. DMDDM and Wtest consistently show lower 
DRMS, reflecting their efficiency in processing data quickly. 
ADWIN struggles with higher DRMS in the Mixed and AGR 
datasets, while PH Test also shows elevated DRMS in most 
datasets. 

6) Average Memory Usage (MUB) 
SeqDrift has the highest average memory usage across all 

datasets, particularly in the AGR and SEA datasets, indicating 
heavy resource consumption. ADWIN also shows significant 
memory usage, especially in the Mixed and SEA datasets. 
DMDDM, FHDDM, and DDM consistently have the lowest 
memory usage, indicating they are more resource-efficient 
across various datasets. 

7) Average Accuracy 
DMDDM, FHDDM, and MDDM-G achieve consistently 

high accuracy across all datasets, particularly in the SEA 
dataset, where they peak at around 89%. PH Test and DDM 
exhibit lower accuracy, especially in the AGR dataset. 
SeqDrift shows varying accuracy, with lower performance in 

the AGR dataset, indicating inconsistent detection reliability 
across different datasets.  
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C. Discussion 

The results indicate that DMDDM is the best-performing 
algorithm overall, excelling in both detection accuracy and 
computational efficiency. Its strong performance across most 
datasets and metrics highlights its robustness and suitability 
for a wide range of applications. 

However, the study also reveals that no single algorithm 
dominates all criteria. For example, while DMDDM is highly 
efficient, SeqDrift's high memory usage might be a concern in 
resource-limited environments. Similarly, PH Test's reliability 
in minimizing false alarms makes it an excellent choice for 
applications where accuracy is paramount, despite its slower 
detection speed. 

These findings underscore the importance of selecting an 
algorithm based on the specific requirements of the 
application context. The Weighted Sum Model (WSM) proves 
to be an effective tool for balancing multiple criteria and 
guiding the selection of the most appropriate algorithm. 

V. CONCLUSION  

 In this study, we performed a comprehensive evaluation 
of eleven leading concept drift detection algorithms using a 
Multi-Criteria Decision-Making approach. By leveraging 
synthetic datasets, we provided an in-depth analysis of each 
algorithm's performance under varying conditions of concept 
drift. The results of our study demonstrate that no single 
algorithm excels in all criteria, highlighting the importance of 
selecting drift detection methods based on the specific 
requirements of a given application. For instance, some 
algorithms showed superior performance in terms of detection 
accuracy but at the cost of higher computational overhead, 

while others were more efficient but less accurate in detecting 
true drifts. 

Our proposed MCDM framework allows for a balanced 
assessment of drift detection algorithms, offering a nuanced 
understanding of their strengths and weaknesses. This 
approach is particularly beneficial for applications in which 
multiple performance criteria are critical, ensuring that the 
chosen algorithm aligns well with the overall system 
requirements. Future work could expand upon this research by 
incorporating additional datasets, exploring the impact of 
different weighting schemes in the MCDM process, and 
developing more sophisticated techniques for handling 
diverse types of concept drift. Moreover, integrating adaptive 
mechanisms into the MCDM framework could further 
enhance its applicability in real-time data stream 
environments. 
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