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Abstract—Neuromorphic processors offer a promising, low-
power alternative to standard von Neumann architectures. For
these processors to be effectively used, it is important to enable
end-to-end processing entirely on-chip to avoid the dominant
power consumption of standard computational components. For
this reason, control problems in autonomous agents present a
compelling domain for applying neuromorphic solutions. In this
simulation study, we introduce a closed-loop, spiking imple-
mentation of Q-learning. Here, we study a proof-of-principle
problem: cartpole balancing. Our approach uses the OpenAI
Gym for off-chip, in-the-loop simulation of cartpole dynamics.
Unlike our previous work in which the Q-learning matrix was
learned entirely off-chip, then transferred on-chip for testing, we
now showcase an entirely spike-based training implemented in
Intel’s Lava Software Framework – software for neuromorphic
simulation. We show that the agent can learn to balance the
cartpole well after training. Our spiking implementation is a
first step towards full, on-chip Q-learning.

Index Terms—Reinforcement learning, spiking neural net-
works, hebbian learning, q-learning control, synfire-gated synfire
chains, sparse coding

I. INTRODUCTION

Reinforcement learning (RL) is a powerful method for
solving complex control problems [1], but traditional im-
plementations, often based on von Neumann architectures,
are typically energy-intensive and unsuitable for real-time
applications [2]. Neuromorphic computing systems, inspired
by biological neural circuits, present a promising alternative
for low-power, low-latency, on-chip learning [3], [4]. These
systems offer significant energy efficiency and the potential for
massive parallelism, making them attractive for implementing
RL in resource-constrained environments.

Despite their promise, adapting traditional machine learn-
ing algorithms, such as RL, to neuromorphic architectures
remains a significant challenge [5], [6]. The core difficulty lies
in managing information propagation within spiking neural
networks (SNNs), which serve as the foundation of neu-
romorphic systems [7], [8]. Unlike traditional architectures,
SNNs transmit information through discrete spikes, making it
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difficult to control when and where spikes occur, thus making
it challenging to implement sophisticated algorithms like RL.

To address this challenge, we propose a novel neuromorphic
reinforcement learning framework based on synfire-gated syn-
fire chains (SGSCs) [7], [8]. This framework enables precise
control over spiking information flow within neural circuits,
providing a pathway for implementing RL on neuromorphic
hardware. We applied this approach to the classic cartpole
balancing task, where the goal is to teach an agent to balance
an inverted pendulum. Using a modular neuromorphic system
integrated with the OpenAI Gym [9] simulation environment,
we successfully demonstrated closed-loop control and learn-
ing.

Our results highlight the capability of SGSCs to solve
complex tasks in self-contained, spike-based neural circuits
by governing the propagation of spiking information. The
SGSC framework not only controls the spatial propagation
of spikes but also their temporal arrival at specific locations
[4]. In our neuromorphic RL implementation, SGSCs are used
to implement Hebbian learning updates for the Q-learning
algorithm. The agent maximizes the expected reward across
discrete states, with learning driven by reward signals from
OpenAI Gym.

The circuit that we designed computes synaptic weight
updates using the Q-learning update rule [10], providing
a proof-of-concept for learning RL policies within spiking
neural networks. Our work demonstrates the feasibility of
implementing RL in neuromorphic systems using simulation
software and lays the groundwork for deploying these circuits
on neuromorphic hardware, such as Loihi 2.

A. Related Work

Previous attempts at solving the cartpole problem have
explored hybrid training methods that leverage neuromorphic-
inspired algorithms, such as Reward-Modulated Spike-Timing-
Dependent Plasticity (R-STDP) integrated with traditional RL
techniques such as the Deep Q-Network (DQN) algorithm
on neuromorphic hardware [5], [6]. Although these previ-
ous methods demonstrated promising results, online, on-chip
learning implementations are preferred, since on-chip learning
both obviates the need to use high-power learning off chip and
also performs learning in the processor being used to control
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Fig. 1: Overview of spiking closed-loop Q-learning circuit.
Here, the agent outputs actions, which are sent to the en-
vironment, OpenAI Gym, which determines the reward, and
the control force on the cartpole determines a new state. The
resulting reward and new state are then returned to the agent.
Weight updates are performed with a greedy RL policy.

the agent. RL algorithms have been claimed to be biologically
plausible [11]; but difficult to implement on neuromorphic
processors due to several issues: (a) Continuous time and space
interaction – the environment must be sampled after every
action by a discrete state representation, therefore methods to
update the proper state-action value are needed [1]; (b) Weight
transport – errors from temporal computation of current and
future Q-values need to be stored [1]; (c) System constraints
– certain neuromorphic processors often have constraints on
the compatible plasticity mechanisms that can be implemented
[3].

II. METHODOLOGY

Q-Learning is a model-free, off-policy reinforcement learn-
ing algorithm that learns by finite Markov decision processes
(finite MDP). Given any state, St, and action At, the agent
learns by interacting with its environment (OpenAI-GYM)
to learn the Q-matrix for the state-action values, which is
updated to maximize future expected rewards. The agent
uses the reward signal with an ϵ−greedy policy to select
actions from the Q-matrix. This process exemplifies a model-
free architecture using off-policy Temporal Difference (TD)
Learning. The TD control algorithm known as Q-Learning [1]
is defined by

TDerror = α [Rt + γmaxQ(St+1, a)−Q(St, At)] (1)

Qnew = Q(St, At) + TDerror. (2)

Q-learning and reinforcement learning face a challenge in bal-
ancing exploration and exploitation. Agents must explore the
environment to gather rewards, but also exploit this knowledge
to make optimal decisions and maximize rewards. Balancing
exploration and exploitation is crucial to avoid suboptimal
policies, as exploitation without exploration can miss out on

better long-term strategies, while excessive exploration with-
out exploitation can fail to capitalize on acquired knowledge.
Several strategies have been proposed to balance exploration
and exploitation in Q-learning. One common approach is ϵ-
greedy policy [1], where the agent selects an action that has
maximal estimated action value with probability ϵ of selecting
a random action. The value of ϵ is typically reduced over time
as the agent becomes more confident in its learned policy,
allowing it to gradually shift from exploration to exploitation.

In our neuromorphic algorithm, Q(St, At) is the Q-value
that will be used in the weight update. The Q-value for
the weight update is represented by the accumulation of ut,
the synaptic current, at time steps 2 and 5, Fig. 2. These
values are stored as variables in neural registers and then
used in the weight update; effectively representing Q(St, At)
and maxQ(St+1, a). The synaptic current, ut is calculated
according to a standard leaky-integrate-and-fire (LIF) model

ui(t) = αui(t− 1) +
∑
j

wijsj(t). (3)

In the above equation, α is the current decay factor, wij are
the synaptic weights, and sj is a binary function representing
a spike from neuron j. The membrane potential is calculated
using

vi(t) = βvi(t− 1) + ui(t− 1). (4)

Here, β is the membrane potential decay factor. In the event
the membrane potential exceeds the voltage threshold of the
neuron, a spike is emitted and the potential resets to zero. The
closed-loop representation of our system is shown in Fig. 1
and the learning parameters of our SNN for training are shown
in Table I.

The network used for learning has only two layers: the pre-
synaptic layer that represents the state St and the post-synaptic
layer that represents At. Fig. 1 illustrates the argmax method
used for closed-loop action selection, when a spike arrives
at the pre-synaptic layer St, the synaptic weight w(t) from
(3) for the neuron is calculated by subtracting each weight
(wi, wj) by its counterpart for the other action, for instance
wi,right = qi,right − qi,left. The neuron corresponding to the
higher Q-value receives a positive potential, while the other
receives a negative potential. This ensures that only the neuron
with the highest Q-value reaches the firing threshold and emits
a spike, effectively implementing the argmax function through
spiking dynamics.

A. Cartpole Problem

The Q-learning algorithm computes the optimal action
based on the state of the system to apply the correct
force required to keep the pole upright. Since the cart-
pole system has a continuous state space, we discretize
the pole’s angle, θ, and angular velocity, θ̇. We represent
the state space as a matrix, which is then unrolled into a
flattened vector. The discretized parameters are encoded as
sparse binary vectors and passed through the pre-synaptic



Hyperparameter Value
discount factor, γ 0.999
initial learning rate, α0 1.0
final learning rate, α1 0.1
initial exploration, ϵ0 1.0
final exploration, ϵ1 0.1
decay rate for learning rate scheduler, k 0.01
network architecture, connections [in, out] of Q [72,2]

TABLE I: Q-learning spike network hyper-parameters

layer, the dynamics of the cartpole system are described by

θ̈ =
g sin θ + cos θ

(
−F−mplθ̇

2 sin θ
mc+mp

)
l
(

4
3 − mp cos2 θ

mc+mp

) (5)

ẍ =
F +mpl

(
θ̇2 sin θ − θ̈ cos θ

)
mc +mp

. (6)

Here, F is the force applied to the pole, mp is the mass of the
pole, mc is the mass of the cart, θ̈ is the angular acceleration of
the angle, ẍ is the linear acceleration, and g is the gravitational
constant.

B. Training a Q-learning SNN

The neuromorphic circuit that implements Q-learning is
depicted in Fig. 2. The figure depicts a network that learns
to synaptically-encode the Q-matrix using SGSCs with bit-
accurate LIF neurons. These neurons use the same dynamics
as Loihi 2, but simulated with Lava. In traditional computing
architectures the Q-learning algorithm has 32-bit weight pre-
cision for performing weight updates. Due to the hardware
constraints of Loihi 2, our algorithm learns the Q-matrix
with 8 bits of precision. Fig. 3 shows the weight update,
which happens every 7 time steps due to periodic potentiation
provided by the SGSC. Spike arrivals from the state and action
neurons are stored in temporary memory relay neurons, rAt

,
rSt

, and rSt+1 which are used to perform a weight update. To
perform weight update, y2 the learning trace is used and sent
to the learning engine.

C. Learning Rule

The learning rule implemented on the Loihi 2 learning
engine is defined by the following equations

∆r = u0(t) · (y2(t)− r(t)) (7)

∆w = r(t) · x0(t) · y0(t). (8)

In these equations, r is an intermediate weight update param-
eter, introduced due to constraints in weight update precision.
The variable u0 serves as the learning engine’s indicator to
apply weight updates at each learning epoch t. The variables
x0(t) = SrSt

(t) and y0(t) = ArAt
(t) represent stored data

derived from pre-synaptic and post-synaptic spikes, respec-
tively. These values are held in memory neurons rSt

and rAt

(see Fig. 2). Equation (7) updates the intermediate update
parameter, r, and (8) implements the local weight update rule.
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Fig. 2: Functional connectivity of the Q-learning circuit. Layer
identity is indicated vertically (y-axis). Time is indicated
horizontally (x-axis). The box in the upper left indicates
connection type. The SGSC that controls (potentiates) neural
information in the circuit is shown at the top (boxes labeled
by Gi, with i ∈ {1, . . . , 7}). Layers labeled with r indicate
relay or short-term memory registers. o represents OpenAI
Gym input. St indicates the state layer (a one-hot vector of
72 = 12 × 6 elements encoding a state with 12 angular
velocities, 6 angles), At indicates the action layer of 2 neurons
(indicating left and right actions). Dashed lines indicate de-
layed connections downstream. The subcircuits that compute
(a) Q−value, (b) maxQ, and (c) the weight update. The
maxQ operation results from greedy action selection. Note
that At and St are gated to pre- and post-synaptic sides of the
plastic weights connecting the state and action layers such that
the weight is updated with the Hebbian learning rule given in
(8).

Timing for spike train transmission from the memory registers
is coordinated by delayed synapses along with a gating pulse,
ensuring proper synchronization during the learning process.

D. Learning Rate and Exploration

The success of the learning process relies on effectively
balancing the agent’s learning rate, α, and exploration rate, ϵ,
to adapt over time without forgetting past experiences. Our
learning rate scheduler dynamically adjusts these variables
based on the rewards per episode and the total number
of episodes experienced, ensuring a gradual and balanced
progression from exploration to exploitation. The equations
governing α are as follows

β = e−k·E (9)

α = max(0.1,min(1, 1− log10(t+ 1)

25
)) · β. (10)



Fig. 3: Weight updates during a single episode. We plot St

(72 neurons), At (2 neurons), Qnew (top three panels), and
dwleft and dwright (lower two panels). Given St and At the
Q-learning circuit in Fig. 2 computes Qnew, which determines
the updates dwleft and dwright. Note that upticks in the (blue,
orange) trace in Qnew prompt updates in dwleft, dwright,
respectively.

Here, β is a decay factor influenced by the number of episodes
E, with k controlling the rate of decay. The learning rate α,
modulated by β, determines how much weight the agent places
on new experiences relative to prior knowledge. When α is
high, the agent prioritizes incorporating new information to
adapt to the environment, facilitating rapid learning. As α de-
creases over time, the agent increasingly relies on accumulated
knowledge, stabilizing its decision-making process.

The exploration rate ϵ, is updated to match α during the
training run. This linkage ensures that both learning and
exploration are aligned: as the learning rate decreases, the
agent reduces exploration and shifts its focus to exploiting
learned strategies. The gradual reduction of α and ϵ ensures the
agent transitions effectively from exploration to exploitation,
refining its actions based on learned policies without over-
saturating with new information.

This dynamic scheduler is critical for achieving stable and
efficient learning in environments that require both adaptability
and retention of past experiences. By coupling the learning and
exploration rates, our framework effectively balances the trade-
off between exploration of the environment and exploitation of
learned strategies, contributing to the robustness and efficiency
of the overall learning algorithm.

Fig. 4: Evolution of x, ẋ, θ, and θ̇ as a function of time for a
single test episode. These results demonstrate that the cartpole
maintains its location with little deviation over the duration of
the test. The time derivatives of x and θ oscillate such that the
cartpole remains upright and the angle, θ, relative to 0 (exactly
upright) also oscillates as the cartpole remains stable.

E. Gating Chain

Gating neurons are organized in a ring structure (Fig. 2),
analogous to the voltage-controlled oscillator (VCO) in a CPU
that generates clock signals. This configuration enables the
gating neurons to autonomously manage the propagation of
information within the neuronal circuit, mimicking the timing
benefits of a CPU without relying on traditional sequential
processor control. The gating mechanism functions as a logical
AND gate or coincidence detector, ensuring that spikes in the
gating chain align with spikes in target neuronal layers (regis-
ters) to facilitate efficient information routing. This approach
provides precise timing for the execution of computational
steps in the circuit. In our implementation, the gating chain
comprises 7 neurons, corresponding to 7 algorithmic time
steps required for the learning process. The gating neurons are
connected to the relay neurons by positive weight connections.
The relay neurons have a voltage threshold greater than the
synapses that propagate incoming spikes from the gating neu-
rons. The relay neurons will only spike when gating neurons
G1, G2, and G4 fire a spike that arrives at the same time as
the spikes from St and At as shown in Fig. 3.

III. RESULTS

This manuscript presents the design and implementation of
a self-contained, spike-based neural circuit capable of solving



Fig. 5: Evolution of the reward over 100 episodes. Rewards,
Rt, from the training of 50 agents are shown. The agent’s
mean is depicted with dark green and the standard deviation
is depicted as the lighter green region surrounding the mean.
Note that, after 60 episodes, the agents are trained with a lower
bound on the reward of approximately 350, and an average
reward of approximately 475.

the cartpole problem. This section outlines the evaluation
process of our learning algorithm and provides performance
results from 50 independent random simulations, each running
for at least 100 episodes.

Figure 4 illustrates the evolution of the parameters (x, ẋ, θ,
θ̇) of the cartpole system during a single episode, including the
pole angle, angular velocity, cart position along the X-axis, and
linear acceleration over time. Notably, the pole angle remains
consistently near zero degrees, demonstrating the algorithm’s
ability to effectively maintain the pole’s balance throughout
the simulation. To evaluate training, we measured the standard
deviation of accumulated rewards across 50 random simula-
tions. As anticipated, our algorithm consistently improved its
performance reaching an average reward of approximately 475
after 60 episodes, as shown in Fig. 5.

With this reward level, the cartpole was consistently bal-
anced over the length of an episode (Fig. 5). In our tests of the
cartpole balancing agent, the system was able to successfully
balance the cartpole for initial conditions previously unseen in
the training data (see Fig. 6). These results validate the pro-
posed learning algorithm’s capacity to maintain stability and
solve the cartpole problem within a spiking neural network.

IV. DISCUSSION

This work demonstrates that spiking neural networks with
local learning can successfully implement on-chip reinforce-
ment learning (RL) algorithms within modular neuronal cir-
cuits, providing a foundation for online learning that can be
translated to neuromorphic hardware. By leveraging synfire-
gated synfire chains (SGSCs), we showcased the ability to

Fig. 6: This figure presents the results of inference per-
formed after training a high-performing agent. Each episode
represents an independent test conducted over 3,500 time
steps. Notably, the agent demonstrates robust performance,
successfully balancing the cartpole in all episodes. The mean
score across these 100 episodes is 491.38, highlighting the
agent’s consistency and effectiveness.

control spike propagation and facilitate real-time learning,
highlighting the potential for spiking networks to perform
sophisticated computational tasks.

Although on-chip learning was only simulated in this study,
our results establish a proof of principle for online learning
in spiking networks, paving the way for future neuromorphic
implementations. Specifically, future work will focus on fully
implementing Q-learning directly on neuromorphic hardware,
where the learning of synaptic weights will be achieved using
intrinsic neuronal mechanisms inherent to the hardware. This
transition will enable a more integrated and efficient approach
to solving control problems on energy-efficient platforms.

By bridging the gap between algorithmic design and neuro-
morphic implementation, this study underscores the viability
of SGSCs as a mechanism for implementing online learning in
spiking neural networks. Our framework provides a pathway
for advancing neuromorphic RL, ultimately contributing to the
development of more adaptive and energy efficient AI systems.
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