
EasyChair Preprint
№ 1831

Improve Image Classication by Convolutional
Network on Cambricon

Peng He, Ge Chen, Kai Deng, Ping Yao and Li Fu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 4, 2019

Improve Image Classification by Convolutional
Network on Cambricon

Peng He1,2∗, Ge Chen1,2?, Kai Deng1,2, Ping Yao1, and Li Fu1

1 Institute of Computing Technology Chinese Academy of Sciences, HaiDian BeiJing
110108, China

2 University of Chinese Academy of Sciences, Shijingshan BeiJing 14430, China
{hepeng18s,chenge18s,dengkai19s,yaoping,fuli}@ict.ac.cn

Abstract. Cambricon provides us with a complete intelligent applica-
tion system, how to use this system for deep learning algorithms devel-
opment is a challenging issue. In this paper, we exploit, evaluate and val-
idate the performance of the ResNet101 image classification network on
Cambricon with Cambricon Caffe framework, demonstrating the avail-
ability and ease of use of this system. Experiments with various op-
erational modes and the processes of model inference show, the optimal
running time of a common ResNet101 network that classifies the CIFAR-
10 dataset on Cambricon is 1715ms. We hope that this work will provide
a simple baseline for further exploration of the performance of convolu-
tional neural network on Cambricon.

Keywords: Cambricon · Convolutional Neural Network · ResNet101.

1 Introduction

Image classification is a fundamental task in the field of computer vision that
labels a picture to distinguish different categories visually and concisely. Classi-
fication task can also guide the development of other tasks: object detection [1],
segmentation [8] and many more, such as instance segmentation, which performs
per-pixel labeling of pictures at instance level. Therefore, since ResNet [10] was
proposed as an effective image classification network at 2015, superior perfor-
mance has enabled it to be applied as a backbone network to almost all other
tasks [1, 2, 9]. Whether the ResNet network can run normally should be regarded
as the basic standard to test whether an intelligent application system can run
robustly.

As the calculation of neural network is a quite computationally intensive pro-
cess, the computing capability of traditional CPU is far from meeting current
computational complexity. Even the GPU is not designed originally specifically
for artificial intelligence algorithms. The Cambricon chip is the first deep learn-
ing processor in the world as far as we know. It uses the hardware’s digital
logic structure, NFU (Neural Functional Units), to simulate the neural network

? Equal contribution.

2 F. Peng He and F. Ge Chen et al.

connection structure to execute multiplication, addition, activation and other op-
erations [17]. With ASIC (Application Specific Integrated Circuit) mode, which
reduces a lot of unnecessary logic functions [24], Cambricon is extremely fast
and consumes very low power, making it a superior alternative to GPU in video
parsing, autonomous driving, and many more other real-world scenarios.

This work is implementing the ResNet101 classification network based on
Cambricon with CIFAR-10 dataset [23]. By trying various operational modes,
we find out the optimal operation strategy and running time to verify the per-
formance and efficiency of Cambricon.

2 Related Work

Image Classification. Image classification, a fundamental problem in com-
puter vision, can be described as categorizing images into one of several pre-
defined classes [14]. It forms the basis for other computer vision tasks such as
localization [5], detection [1–4, 6], and segmentation [7–9]. Traditionally, hand-
crafted features can be extracted from images using feature descriptors for the
purpose of classification. The major disadvantage of this approach is that the
accuracy of the classification result is profoundly dependent on the design of
the feature extraction stage. In recent years, deep learning has developed to be
a convenient, effective and robust tool to extract features from images, audio,
etc, which does not require handcrafted features. Especially, DCNNs for image
classification tasks achieved state-of-the-art results in the ImageNet Large Scale
Visual Recognition Challenge since 2012 [14].

ResNet. In theory, the performance of the neural network should be posi-
tively related to the depth of the network, because the deeper the network, the
more parameters it has, the more complicated it is. But the early experimenters
observe that as the number of network layers increases, the model accuracy will
rise first and then reach saturation, and continuing to increase layers will result
in a decrease in accuracy sharply, which we called degradation [10]. ResNet’s [10–
13] proposal solves this problem very well. By introducing the residual network
structure, it can make the network very deep, at the same time the final classifi-
cation result is also very satisfactory. In this case, the depth of the network can
be extended to tens, hundreds or even thousands of layers, providing the feasi-
bility of extracting and classifying high-level semantic features. ResNet made a
stunning appearance in the ILSVRC2015 competition, which raised the network
depth to 152 layers, reducing the error rate to 3.57. In terms of image recogni-
tion error rate and network depth, it has greatly been improved compared with
previous models. This also makes the network become the backbone network of
the later convolutional neural network model, and many models with excellent
performance subsequently are transformed on the basis of ResNet [1–4, 8, 9].

Cambricon. CPU and GPU are designed to handle many different com-
puting tasks originally. They have multiple functional logic units inside, which
are widely applicable. But for a computationally intensive computing task, they
are not so efficient [15, 16]. Current artificial intelligence algorithm mainly in-

Improve Image Classification by Convolutional Network on Cambricon 3

cludes two aspects: convolutional neural network and recurrent neural network.
From the point of view of decomposition, they are composed of a lot of matrix
multiplication or tensor element-by-element multiplication, so the CPU will no
longer be suitable for this algorithm, and the GPU will be better, but there is
still a lot of room for improvement. Since the introduction of the Cambricon
chip, it has sparked a wave of research and application of deep learning acceler-
ators. It is designed for the local and computational characteristics of artificial
intelligence algorithms and neural network models to achieve better performance
acceleration ratio and computing capability consumption ratio. On this basis,
the application scenarios targeted by the deep learning chip are further divided,
so the high-performance computing architecture DaDianNao [17] for the server
side, the ShiDianNao [18] for the edge-end device application scenario, the PuDi-
anNao [19] for the more generalized machine learning algorithms, all appeared.
And the Cambricon instruction set [20] for a wider range of machine learn-
ing accelerators and the Cambricon-X [21] for hardware acceleration using data
sparsity have been proposed for better use of these architectures.

3 Experiments

3.1 Multiple Operating Modes of Cambricon

To support the Cambricon machine learning processor, Cambricon modifies the
open source deep learning programming framework Caffe, and adds some func-
tions like offline, multi-core forward inference and so on, to form Cambricon
Caffe. It is compatible with native Caffe’s python/C++ programming interface
and the native Caffe network model [22]. Besides, it provides a convenient in-
terface to run various types of deep learning applications and a series of APIs
provided by the Cambricon Neuware Machine Learning Library (CNML) for effi-
cient inference. CNML interacts with the Cambricon machine learning processor
by calling the Cambricon Neuware Runtime Library (CNRT) and drivers. Ap-
plications can also call CNML or CNRT directly to use the Cambricon Machine
Learning Processor [20].

In the Cambricon operating environment, a variety of different programming
models are supported. Firstly, the Cambricon machine learning processor is a
multi-core processor architecture with 32 cores and supports two parallel modes:
model parallelism and data parallelism. The setting of two parallelism param-
eters is based on the specific model. Reasonable model parallelism and data
parallelism can optimize the performance of MLU (Machine Learning Unit).
The MLU also supports multi-card mode, such as multiple MLU cards installed
on a single server, allowing the model to run on different cards or distributing
the calculations to multiple MLU cards. MLU supports two different modes of
operating mode: online and offline. Online mode refers to the mode that depends
on the Cambricon Caffe framework to run, and offline mode refers to the mode
that uses the runtime function interface directly from the framework.

4 F. Peng He and F. Ge Chen et al.

3.2 Design Details

In this work, our main concern is the running time of the model, that is, selecting
the most suitable model settings, and completing the inference process of the
ResNet101 classification model on the CIFAR-10 dataset in the shortest time.
As we mentioned above, in order to speed up the inference process of the model,
we try to select multi-core, multi-card, offline operation mode.

First of all, for programming model, we can choose multi-core and multi-card.
The multi-core is determined by model parallelism and data parallelism. MLU
provides us with up to 32 cores. The degree of parallelism of model and data
decides the number of cores used. We use grid computing to choose the best
combination of model parallelism and data parallelism for this problem. On the
other hand, the BenchCouncil provides only one MLU in the runtime environ-
ment, we can’t try the multi-card programming process. In terms of the model’s
operating mode, the online process depends on the operation of the Cambricon
Caffe framework, while the offline mode is independent of the framework, so we
choose the offline mode. The final result of the operation is shown in the figure 1.

3.3 Results in Challenge

In the subsequent experiments, we test model inference on pre-trained ResNet101
with the CIFAR-10 dataset. The three parameters that need to be adjusted are:
parallelism of the model, parallelism of the data, and number of threads. The
degree of parallelism of model and data together determines the number of cores
used by the model. Because BenchCouncil provides us with a total of 32 cores,
single card MLU, in order to get the best inference time, we use the most number
of cores. In addition, we did some experiments to find out the influence of threads
on the speed of model inference. In order to fully use the 32 cores, our model
parallel number and data parallel number will be set as 2/16, 4/8, 8/4, 16/2 and
32/1 in order. Meanwhile, we select 2, 4, 6, ..., 14, 16 to test the optimal number
of threads. The experimental results are shown in figure 1. According to it, we
can summarize as fllow:

With the same degree of parallelism, the more threads, the longer the time
of model inference: we believe that when the degree of parallelism of the model
and the data both are 1, a total of 32 threads can be created, so the degree
of parallelism and threads are mutually exclusive. Now, in order to maximize
the number of cores, the degree of parallelism is also set to a maximum of 32,
and then increase the number of threads, which will cause resource preemption
among different threads, reducing the speed of reasoning.

Under the specific number of threads, when the model parallelism and data
parallelism are 4 and 8, model inference time is the shortest, and it can be
considered that the performance matching of the two factors is optimal.

4 Conclusion

In order to solve the problem of image classification on Cambricon, we find out
a model setting that is most suitable for the execution of ResNet101 network,

Improve Image Classification by Convolutional Network on Cambricon 5

Fig. 1. Illustration of results of model inference under the influence of three factors.
The abscissa represents the number of threads, and the ordinate represents the time
of model inference. Different colors are different model and data parallelism matching.
For example, 2/16 indicates that the model parallelism is 2 and the data parallelism is
16. Under certain thread numbers, the combination of different parallelism will cause
MLU out of memory. For example, in 16 threads, if 2/16 is used, the memory will
overflow, we don’t display these results in this figure.

and adopt the multicore and multithreading method to transplant the network
to the Cambricon operating environment for faster speed. Our transplantation is
effective and efficient. We also record the differences among these combinations,
and hope the implementation details publicly available can help the community
adopt these useful strategies for object detection, scene parsing and semantic
segmentation and advance related techniques.

5 Acknowledgements

The authors would like to thank BenchCouncil for BenchCouncil Testbed. The
whole team is supported by Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No.XDA19020400), Equipment Pre-Research Fund
(Grant No.61403120405, Grant No.6141B07090131) and Spaceborne Equipment
Pre-Research Project(Grant No. 305030704).

References

1. R. Girshick, F., J. Donahue, S., T. Darrell, T.: Rich feature hierarchies for accurate
object detection and semantic segmentation. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR)(2014)

2. R. Girshick, F.: Fast R-CNN. IEEE International Conference on Computer Vision
(ICCV) (2015)

6 F. Peng He and F. Ge Chen et al.

3. K. He, F., X. Zhang, S., S. Ren, T., et al: Spatial pyramid pooling in deep con-
volutional networks for visual recognition. European Conference on Computer Vi-
sion(ECCV), 346-361(2014)

4. Lin. Tsung Yi, F., Dollár. Piotr, S., Girshick. Ross, T., et al: Feature pyramid
networks for object detection. IEEE Conference on Computer Vision and Pattern
Recognition(CVPR)(2017)

5. Zhou. Bolei, F., Khosla. Aditya, S., Lapedriza. Agata, T., et al: Learning Deep
Features for Discriminative Localization. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition(2016)

6. Lin. Tsung Yi, F., Goyal. Priya, S., Girshick. Ross, T., et al: Focal Loss for Dense
Object Detection. Proceedings of the IEEE International Conference on Computer
Vision(2017)

7. Ronneberger. Olaf, F., Fischer. Philipp, S., Brox. Thomas, T., et al: U-net: Convo-
lutional networks for biomedical image segmentation. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics)(2015)

8. K. He, F., G. Gkioxari, S., P. Doll’ar, T., et al: Mask R-CNN. IEEE International
Conference on Computer Vision (ICCV) (2017)

9. H. Zhao, F., J. Shi, S., X. Qi, T., at al: Pyramid scene parsing network. IEEE
Conference on Computer Vision and Pattern Recognition(CVPR) (2017)

10. He. Kaiming, F., Zhang. Xiangyu, S., Ren. Shaoqing, T., et al: ResNet. Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition(2016)

11. He. Kaiming, F., Zhang. Xiangyu, S., Ren. Shaoqing, T., et al: Identity mappings
in deep residual networks. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(2016)

12. Wang. Fei, F., Jiang. Mengqing, S., Qian. Chen, T., et al: Residual attention net-
work for image classification. Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition(CVPR)(2017)

13. He. Kaiming, F., Zhang. Xiangyu, S., Ren. Shaoqing, T., et al: Deep Residual
Learning for Image Recognition. Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition(2016)

14. Krizhevsky. Alex, F., Sutskever. Ilya, S., Hinton. Geoffrey T.: ImageNet classifi-
cation with deep convolutional neural networks. Advances in Neural Information
Processing Systems(2012)

15. Bergstra. James, F., Breuleux. Olivier, S., Bastien. Frederic Frédéric, T., et al:
Theano: a CPU and GPU math compiler in Python. Proceedings of the Python for
Scientific Computing Conference (SciPy)(2010)

16. A. Coates, F., B. Huval, S., T. Wang, T., et al: Deep learning with cots hpc systems.
In International Conference on Machine Learning(2013)

17. Chen. Yunji, F., Luo. Tao, S., Liu. Shaoli, T., et al: DaDianNao: A Machine-
Learning Supercomputer. Proceedings of the Annual International Symposium on
Microarchitecture(MICRO)(2015)

18. Du. Zidong, F., Fasthuber. Robert, S., Chen. Tianshi, T., et al: ShiDianNao: Shift-
ing vision processing closer to the sensor. Proceedings - International Symposium
on Computer Architecture(2015)

19. Liu. Daofu, F., Chen. Tianshi, S., Shaoli. Liu, T., et al: PuDianNao: A Polyvalent
Machine Learning Accelerator. ACM SIGPLAN Notices, 369-381

20. Liu. Shaoli, F., Du. Zidong, S., Tao. Jinhua, T., et al: Cambricon: An Instruc-
tion Set Architecture for Neural Networks. Proceedings - 2016 43rd International
Symposium on Computer Architecture(ISCA)(2016)

Improve Image Classification by Convolutional Network on Cambricon 7

21. Zhang. Shijin, F., Du. Zidong, S., Zhang. Lei, T., et al: Cambricon-X: An accelera-
tor for sparse neural networks. Proceedings of the Annual International Symposium
on Microarchitecture(MICRO)(2016)

22. Jia. Yangqing, F., Shelhamer. Evan, S., Donahue. Jeff, T., et al: Caffe: Convolu-
tional architecture for fast feature embedding. MM 2014 - Proceedings of the 2014
ACM Conference on Multimedia

23. Krizhevsky. Alex: Learning Multiple Layers of Features from Tiny Images. (2009)
24. C. Farabet, F., B. Martini, S., B. Corda, T., et al: NeuFlow: A runtime reconfig-

urable dataflow processor for vision. CVPR Workshop, 109–116(June 2011)
other custom neural network algorithms

25. J.-y. Kim, F., S. Member, S., M. Kim, T., et al: Real-Time Multi-Object Recogni-
tion Processor With Bio-Inspired Neural Perception Engine. IEEE Journal of Solid-
State Circuits 45(1), 32–45 (Jan. 2010)

