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Abstract— The integration of machine learning (ML) and 

deep learning (DL) in structural health monitoring (SHM) and 

remaining service life (RSL) has revolutionized the ability to 

assess and maintain critical infrastructure. This review looks at 

the current state of SHM methods that use ML and DL. This is 

done by providing a detailed taxonomy that groups these 

methods into groups based on algorithmic strategies, data 

sources, and specific SHM and RSL applications. Using Scopus 

as the primary source for literature, we conducted a systematic 

review following PRISMA guidelines to ensure thorough 

screening and quality assessment of most relevant studies. The 

review covers key areas that include supervised and 

unsupervised learning techniques, neural networks, and their 

applications to structural damage detection, failure prediction, 

improving precision in monitoring. Based on the trend analysis 

and highlighting of some of the challenges in this context, this 

review has identified a few future opportunities for applying 

advanced learning techniques to SHM to improve infrastructure 

safety and management. 
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I. INTRODUCTION 

 Engineering structures including buildings, bridges, and 
tunnels require structural health monitoring (SHM) to ensure 
their safe working conditions in various environmental 
conditions over aging [1]. SHM is a process of collecting data 
using sensors, analyzing them, and monitoring the condition 
of structures with the help of diagnosis tools [2]. The aim of 

SHM is to monitor the stress that leads to the aging of 
structures and detect real-time degradation for preventive 
maintenance to improve the safety and reliability of such 
structures. SHM helps to estimate the remaining service life 
(RSL) of a system, and it is very important when failure risk 
is high, and damage can be controlled [3]. In recent years, 
major road work in the European union is for maintenance, 
with only a fracture for building the new roads. Lack of 
information for road maintenance, leading to road damage. 
Poor maintenance results in more repair costs and a higher 
vehicle operating cost. It also harms the environment by using 
more resources and increasing emissions. Real-time 
monitoring is required to identify maintenance checks, which 
will help to reduce the costs and extend the service life of 
roads [4]. It is important to detect the damage in early stages. 
Common problems in pavements are cracking and sinking 
usually caused by heavy traffic and overloading. In order to 
provide safe and durable structures, modeling is necessary. 
The modeling of SHM is important because it allows 
engineers and researchers to simulate and analyze the 
behavior under different conditions and predict the RSL of 
structures [4,5]. The SHM system gives useful information 
about a structure’s condition and helps choose the optimal 
maintenance actions. Hence, the need for SHM has grown 
over time and remains important today. However, the 
complexity of pavement materials and diffident 
environmental conditions make it challenging to develop 
efficient models for detecting and monitoring road damage 
[6,7]. Conventionally, the SHM relied heavily on physical 
inspections, manual data collection, empirical methods, and 
mathematical models. This traditional approach often 
involved time-consuming processes, requiring skilled 
inspectors to physically access and examine structures. While 
effective to some extent, this method was prone to errors and 
often limited by factors such as accessibility, time, and cost. 
Real-time inspection and maintenance have become 
increasingly essential in today's infrastructure management to 
reduce costs and extend the remaining service life (RSL) of 
various structures. Timely insights allow for preventive 
actions, which can mitigate deterioration and avoid costly 
repairs. Recently, however, advancements in technology have 
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drastically transformed SHM by shifting from manual 
procedures to more efficient, automated techniques. With the 
rise of machine learning (ML) and deep learning (DL) 
methods, along with real-time condition monitoring, SHM has 
become significantly more advanced. The integration of these 
technologies enables continuous data collection and analysis, 
leading to higher accuracy, real-time insights, and cost-
effective decision-making. As a result, these intelligent 
monitoring systems allow for predictive maintenance 
strategies, which not only prolong the lifespan of structures 
but also optimize maintenance schedules to reduce downtime 
and expenses [4]. One prominent application of SHM using 
DL is in road infrastructure, where sensor-equipped vehicles 
collect large volumes of data to evaluate road conditions. The 
collected data undergoes preprocessing and analysis through 
sophisticated DL algorithms, which can identify patterns and 
extract relevant features, such as cracks, roughness, and 
subsidence. Based on these features, the algorithms predict the 
overall structural health and quality of the roads, enabling 
maintenance teams to prioritize repairs and plan for long-term 
infrastructure sustainability. This approach offers a highly 
efficient alternative to traditional road inspections, as it can 
process massive amounts of data in real time, resulting in 
faster, data-driven decisions. A graphical representation of 
SHM, demonstrating its components and benefits, is shown in 
Fig.1, adapted from [8]. This illustration highlights how 
automated systems are transforming SHM processes and 
providing unprecedented insights into structural conditions 
through modern, data-intensive approaches. The growing 
demand for ML and DL-driven SHM methods illustrates the 
industry's recognition of their potential to revolutionize 
infrastructure management.  

 

Fig. 1. Graphical representation of SHM for roads. 

In the fields of mechanical, aeronautical, and civil 
engineering, fiber optic sensors (FOS) are important devices 
for monitoring strain and temperature in different types of 
structures. Their high precision and lightweight design are 
some of their advantages. For this, [4] demonstrated the use of 
fiber Bragg grating (FBG) optical sensors with a real-time 
monitoring system for the SHM of roads. In addition to it, [5] 
embedded these sensors in pavements to collect strain and 
temperature data. This setup effectively determines the 
stiffness of the road’s upper layers using strain values, 
allowing for the monitoring and prediction of the RSL of 
large-scale roads. In a work by (Gao et al., 2018) a damage 
model was developed for asphalt pavements to efficiently 
predict the RSL. They conducted indirect tensile tests (ITTs) 
on asphalt mixtures of different ages to measure the damage 
based on the energy lost during loading. Following this, [6,7] 
developed a fatigue assessment method for a bridge in China. 
The data is collected from the SHM system to develop a three-

dimensional finite element model. The findings showed that 
this approach effectively determines varying traffic loads and 
irregular fatigue damage. In studies by (Saleh, 2014&2016) 
[9,10] a falling weight deflectometer (FWD) is used to 
measure the pavement surface deflection in his studies to 
predict the RSL of pavements. In a related work by [11] a new 
method was developed to assess the RSL of highway roads 
using data from a traffic speed deflectometer (TSD). This 
methodology addresses important problems like road cracking 
and estimate the remaining fatigue strength. 

Pavement management are often expensive, laborious, and 
time consuming process. For this Khahro et al., (2021) [11] 
developed an automated sensor-based cloud application to 
assist pavement management. The data is collected from a 
1,000 km road network. The proposed system successfully 
identifies several road sections for maintenance. In a related 
study by [12] developed a road health monitoring system that 
uses android phone sensors to measure and analyze road 
roughness. The data is collected using accelerometers and 
gravity sensors. Wei et al., [14] used the Markov chain method 
to monitor the service life of airport runways over time. A 
duration function model is developed to categorize the 
condition of runway pavement based on the Pavement 
Condition Index (PCI). The results indicated that the Markov 
transition matrix effectively predicts the RSL of airport 
runways. (Garcia et al., 2024) evaluated the RSL and assessed 
the strength of airfield pavement under different load 
conditions using lightweight deflectometer (LWD) which 
showed potential for monitoring pavement degradation. 
Similarly, [13] developed a model for predicting the RSL of 
airfield pavement slabs using strain gauge data. After 
mentioning the conventional methods for SHM and RSL, it is 
worth presenting the literature that highlights the use of ML 
and DL. In a study by [8], a road health monitoring system 
was developed using a deep learning-based technique with 
sensors that can run on smartphones. The proposed solution 
optimizes the deep neural network (DNN), and the results 
show that the system can effectively identify road types with 
high accuracy. Nabipour et al., (2019) [15] aimed to improve 
the prediction of the RSL of pavements using support vector 
regression (SVR), SVR optimized fruit fly optimization 
algorithm (SVR-FOA), and gene expression programming 
(GEP). The results showed that GEP was the most accurate 
method for predicting RSL, achieving the best performance 
across multiple evaluation metrics. Similarly, [16] developed 
a SVR model to efficiently predict the RSL of road pavements. 
It was tested using data from heavy weight deflectometer 
(HWD) and ground-penetrating radar tests. The SVR model 
outperformed other models, e.g., artificial neural networks 
(ANN), and multi-layered perceptron (MLP), with an 
accuracy of 95% accuracy. To further explore this topic, [17] 
used a random forest (RF) and a genetic algorithm trained RF 
(RF-GA) to predict the PCI using roughness and distress data. 
The data is collected using road surface profiler (RSP) from 
Tehran-Qom Freeway in Iran and PCI is determined. The 
models were tested and RF-GA showed better performance 
than standard RF method. In a study by [20, 21] an ANN-
based model was developed to predict the RSL of flexible and 
composite pavements. The model was effective at modeling 
pavement deterioration, particularly under different traffic 
conditions, thicknesses, and degradation patterns. [18] 
focused on addressing road damage like potholes and rutting, 
which can lead to serious accidents and increased maintenance 
costs. They developed an ML algorithm using an RF to 



classify different types of road damages. The results provided 
high accuracy of 97% in identifying and classifying road 
damages. Zhang et al., (2024) [19] studied the temperature 
distribution in road-rail bridges. They developed a long short-
term memory (LSTM) model to predict the effective 
temperature (ET) and temperature difference (TD) based on 
environmental conditions. This model is compared with 
conventional linear regression models and achieved 40% 
improved in accuracy. 

Fig. 2. A graphical representation of the initial database based on general 

applications  from the period of 2014 to 2024.   

Based on the findings from the above literature, it is clear 
that traditional methods for predicting RSL and conducting 
SHM for roads are less efficient. Researchers have used ML 
and DL methods less frequently for such tasks. Additionally, 
there is less literature available on ML and DL approaches 
compared to traditional methods, indicating a need for further 
exploration. Therefore, this study will focus specifically on 
ML and DL methods for RSL and SHM and will provide a 
taxonomy to help understand the studies and their 
contributions to these applications. This research highlights 
gaps in using ML and DL for SHM and RSL. Specifically, 
there is a need for larger datasets, improved integration of 
learning techniques, and real-time modeling. This research 
gap can be filled by developing datasets, using multimodal 
approaches, creating real-time monitoring systems. This can 
improve the clarity of model outputs and ensure researchers 
use effective methods for safe structure management. This 
study focuses on reviewing the most utilized ML and DL 
methods for conducting SHM and predicting RSL of the 
structures. This study aims to understand how ML and DL 
improve the monitoring and maintenance of buildings, 
bridges, and other infrastructures. To improve the accuracy of 
damage detection and RSL predictions the advantages of 
using ML and DL are also highlighted. This research will 
provide valuable insights that can help engineers and 
researchers to implement better strategies for maintaining 
crucial structures. The structure of this study is as follows: 
Section 2. follows the research methodologies. Section 3. 
highlights the significant applications of ML and DL methods 
for SHM and RSL. The findings from this study along with 
future directions are concluded in Section 4. 

II. METHODOLOGY 

The literature search for this review was conducted using 
the Scopus database, which was chosen for its extensive e-
coverage of peer-reviewed publications in engineering, 
technology, and applied sciences. A set of keywords, 
including “Structural Health Monitoring,” and “Remaining 
Service Life,” “Machine Learning,” “Deep Learning,” and 

others related to ML/DL methods, included for the search. The 
search was restricted to English-language publications and 
included articles, conference papers, and reviews from 
January 2014 to October 2024. A total of 5243 studies were 
identified in the initial search, all focusing on the application 
of ML and DL to SHM and RSL systems as shown in Fig.2. 
The search query follows: (title-abs-key (“structural health 
monitoring” or” remaining service life”) and title-abs-key 
(“machine learning” or “deep learning” or “artificial 
intelligence” or “neural network*” or “support vector” or 
“lstm” or “decision tree*” or ensemble or “random forest”)). 
Then we narrowed the subject to road to include pavement, 
highway, and autobahn and eventually reduced the articles to 
150. Full-text reviews were conducted on the remaining 
studies, with eligibility criteria centered on the direct 
application of ML/DL techniques in SHM. Key considerations 
included the use of ML/DL models for tasks like damage 
detection, anomaly prediction, and failure forecasting. Quality 
assessments were applied to each study to ensure 
methodological rigor, leading to the inclusion of 128 high-
quality studies for analysis. After employing Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) and screening we reduced the references to 28. In 
this article we review and consider these 28 articles. A 
graphical representation of these articles from the period of 
2014 to 2024 are illustrated in Fig.3. 

Fig. 3. A graphical representation of the most relevent articles based on 

RSL and SHM on roads from the period of 2014 to 2024.   

 

Fig. 4. Adapted PRISMA Flow Diagram. 

The review process followed PRISMA guidelines to ensure a 

systematic and transparent methodology. The screening 
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process began with an initial review of titles and abstracts to 

filter out irrelevant studies, particularly those unrelated to 

SHM or focused on other domains like medical monitoring. 

The phases of PRISMA methodologies are presented in the 

Fig.4. The selected studies were categorized into a taxonomy 

based on algorithmic strategies, data sources, and application 

areas. This taxonomy provided a structured overview of how 

ML and DL techniques are employed in SHM, categorizing 

studies into groups such as supervised learning, unsupervised 

learning, and DL applications. Data sources like vibration 

data, strain gauges, and acoustic signals were also classified. 

This approach helped identify key trends, emerging 

techniques, and challenges within the field, providing a 

comprehensive analysis of how these methods are advancing 

SHM and pointing to future opportunities for further 

development. 

III. STATE OF THE ART REVIEW 

This review explores how machine learning and deep 

learning transform the monitor the maintenance of roads and 

bridges. It highlights applications such as predicting traffic 

loads, pavement durability, and structural health using smart 

sensors, supervised learning, and advanced optimization 

techniques. Topics include innovative methods like using 

drones and infrared thermography for real-time monitoring, 

automated defect detection in bridges, and leveraging 

unsupervised learning for condition assessment. By 

examining these cutting-edge approaches, the review studies 

how ML and DL can enhance infrastructure safety, improve 

monitoring efficiency, and resilient roads and bridges. 

TABLE I.  ML AND DL APPLICATIONS FOR STRUCTRUAL HEALTH MONITORTING 

 
Current developments in ML and DL have greatly 

improved the SHM of structures. In a study by [22] a Traffic 

Load Estimation (TLE) method is investigated using data 

from accelerometers on road structures. They compared 

different supervised learning approaches, such as Linear 

Regression (LR), K-Nearest Neighbors (KNN), 

Convolutional Neural Network (CNN), RF, MLP, and SVR. 

The results showed that the SVR achieved the highest 

accuracy, with a Mean Absolute Error (MAE) of 0.47 for 

light vehicles and 0.21 for heavy vehicles. The author plans 

to explore the integration of different TLE methods to further 

improve accuracy while ensuring the reliability and security 

of the system. [16] developed a new model to predict the RSL 

of road pavement using the SVR method. The results were 

compared with SVM, ANN, and MLP models. The SVR 

model demonstrated promising result with actual RSL values 

from non-destructive HWD tests, confirming its effectiveness 

and accuracy. The authors believe this method can be 

effectively utilized, especially with real time environmental 

and pavement thickness data. Additionally, it could reduce 

costs and traffic disruptions compared to other traditional 

testing methods. In a similar study by [15], the authors 

focused on the International Roughness Index (IRI) and the 

PCI using ML. They used the RF and RF-GA to predict PCI 

values. The results showed that the RF-GA method had better 

correlation coefficients (CC), scatter indices (SI), and 

Willmott’s indices (WI), indicating improved model 

performance compared to the standard RF method. The 

Authors Source title Application Methods 

Burrello et al., 2022 Sustainable Computing Traffic Load Estimation using supervised learning RF, MLP, SVR 

Karballaeezadeh et al., 2019 Engineering Applications of 

Computational Fluid Mechanics 

Predicting pavement durability with SVM optimization SVM, ANN, MLP 

Karballaeezadeh et al., 2020 Coatings Monitoring flexible pavements using smart sensors  RF, RF-GA 

Kaya et al., 2020 Transportation Research Record Flexible and composite pavement analysis  ANN 

Jansen and Geißler, 2021 Bauingenieur Defects detection using ML in road bridges  ML, PCA 

Soni et al., 2023 IEEE Conference  Monitoring rural roads using sensor based smartphones SVM 

Dugalam and Prakash, 2024 Expert Systems with Applications Innovative road monitoring with RF algorithms RF, SVM, KNN  

Nabipour et al., 2019 Mathematics RSL prediction of flexible pavement using ML GEP, SVR  

Skokandic et al., 2018 IABSE Symposium Optimizing bridge monitoring with WIM and ML  DT 

Medhi et al.,2019 Nondestructive Evaluation Real time structural monitoring using ANN ANN 

Belcore et al.,2022 Computer and Information Science Automated classification of bridge defects RF 

Asthana et al., 2022 IEEE Zooming  Autonomous sensor design for SHM NN, SANNs 

Kulkarni et al., 2023 Automation in Construction Infrared Thermography with DL for roadway health    YOLO   

Zhang et al., 2024 Engineering Structures Predictive modeling for road-rail bridge    LSTM 

Zoric et al., 2024 Unmanned Aircraft Systems SHM using DL and drones technologies  RCNN  

Mishra et al., 2021 IEEE Sensors Journal Real-time road monitoring using DL DNN 

Chen et al., 2021 Systems and Informatics  Comparative analysis of TL Methods in SHM   TL 

Calderon et al., 2023 Lecture Notes in Civil Engineering Automated bridge condition assessment    CVAE 

Malik et al., 2022 Procedia Computer Science Active damage detection with UAVs and DL CNN  

Cho et al., 2024 Buildings Improving data quality in SHM LSTM  

Rosso et al., 2023 Proceedings of IABMAS  Integrating DL with SHM Technologies CNN, RNN  

Ranieri et al., 2023 Structural Health Monitoring  DL approaches for automated road surface assessment.  CNN 

Hassani et al., 2024 Information Fusion Optimizing SHM with data fusion  LLMs 



author stated that advanced ML techniques and non-

destructive testing methods can improve the SHM process, 

leading to lower costs and better efficiency in pavement 

management. [20] developed ANN model to predict 

pavement performance and RSL for roads and compared it 

with statistical methods. The results showed that ANN 

models were more effective for larger networks. The author 

aims to develop efficient automation methods for pavement 

management. [23] introduced the R-signature method with 

principal component analysis (PCA) to identify structural 

damage in bridges. The proposed anomaly detection 

procedure successfully identified damage. Further 

advancements in the R-signature method by integrating it 

with other anomaly detection techniques and enhancing its 

effectiveness using various sensor data are discussed. [24] 

developed a road health monitoring system using smartphone 

sensors to collect data on road conditions in rural areas of 

Punjab and Haryana, India. They used the SVM method to 

classify different road types and compared the conditions in 

both states. The model achieved over 96% accuracy in 

predicting road roughness. Similarly, [18] developed a new 

road damage classification algorithm using a RF classifier. 

Data was collected from accelerometers and a smartphone 

camera mounted on a vehicle. The algorithm achieved 97% 

accuracy in classifying road damage like potholes, speed 

bumps, and rutting. It also performed better than other models 

like SVM, KNN, Naive Bayes, and Decision Tree (DT) and 

was used to estimate repair costs. The authors suggest testing 

the model in different environmental conditions and using 

data from various geographic areas to improve the SHM 

process. [15] developed a new approach to predict the RSL of 

flexible pavements using surface distress instead of traditional 

non-destructive methods. They utilized ML techniques such 

as GEP, SVR, and an optimized version of SVR called SVR-

FOA. Result showed that GEP outperformed the others with 

the highest accuracy in predicting RSL. The authors suggest 

that GEP can optimize pavement management systems by 

improving accuracy and reducing costs. [25] employed 

assessment techniques, alongside Value of Information (VoI) 

analysis, to connect SHM data using weigh-in-motion (WIM) 

measurements integrated with DT. The findings indicate that 

WIM measurements improve the reliability of bridge 

assessments and potentially extend the predicted RSL of these 

structures. [26] developed a computer vision-based system for 

monitoring the health of structures using a high-speed camera 

and an ANN. They used a “blob detection algorithm” to track 

the location and movement of structural features. The system 

was tested and can predict the condition of structures with 

good accuracy. The authors suggest that using high-speed 

video imaging for regular monitoring will ensure the safety of 

structures and extend their RSL. [2] proposed an automated 

method for detecting bridge defects using drone images. They 

used a RF technique to classify different defects successfully. 

The authors noted that improving the dataset with infrared-

sensitive sensors and exploring spectral calibration will 

further improve the model’s performance. [1] designed an 

autonomous IoT system for SHM of roads and bridges using 

advanced NNs. The research employed Self-Repairing 

Spiking Astrocyte Neural Networks (SANNs) integrated with 

self-powered sensor nodes to improve SHM. The findings 

demonstrated that the proposed system could effectively 

detect defects while maintaining low power consumption. 

This study will inspire the use of autonomous monitoring 

systems helping to develop more sustainable infrastructure. 

After discussing several ML methods in SHM, it is 
important to explore the DL methods in this field. Several 
studies demonstrate the effectiveness of DL techniques in 
analyzing complex and scalable data from various sensors 
placed on structures. DL has become a significant approach in 
this area. Researchers have effectively detected problems and 
predict the RSL of structures by using advanced DL 
algorithms. For example, Kulkarni et al., [27] developed an 
automated method for detecting potholes in roads using drone-
captured infrared images. They utilized principal component 
thermography (PCT) analysis to improve the detection 
accuracy and DL based EfficientDet technique to automate the 
inspection process. Their model achieved a mean average 
precision (MAP) of 0.85 in detecting defects, outperforming 
the fifth version of the You Only Look Once (YOLO V5) 
algorithm by 24% in less time. This approach is limited to 
detecting shallow defects. The author highlighted the 
importance of environmental factors in improving infrared 
image quality to improve the accuracy of road damage 
detection methods. [19] investigated the temperature 
distribution in road-rail steel bridge. They used LSTM 
network to predict ET and TD based on environmental factors. 
This DL based method improved the prediction accuracy by 
40% as compared to other traditional methods. The results 
showed that rise in temperature significantly affects the 
structural health of bridge. The effect of light reflection on 
temperature distribution by developing the three-dimensional 
structure of the bridge are discussed. [28] explored the use of 
multirotor aerial vehicles (MAVs) and DL techniques to 
improve the inspection of roads and bridges. They trained two 
neural networks (NNs) such as Mask recurrent neural network 
(Mask-RCNN) and Real-Time Multi-Task Detection-small 
(RTMDet-s) to detect and categories the cracks from SHM 
datasets. The results showed that these networks effectively 
localized cracks. The author highlights the need to improve 
object tracking and conduct real-time testing to develop the 
system. Mishra et al., (2021) [8] developed a road health 
monitoring system that uses sensors to classify different types 
of roads using a DL based classifier. The proposed system 
successfully identifies road types. The authors recommend 
developing devices, like smartphones, that use DNN models 
to send real-time data about road and vehicle conditions. Chen 
et al., (2021) [7] explored the use of DL in SHM to detect 
defects, focusing on the challenge of limited data. They 
applied transfer learning (TL) to address the issue of limited 
datasets in SHM. The results show that TL improves model 
performance and reduces the need for high computing 
resources. The study suggests that integrating TL with 
smartphones and drones for real-time defect detection in SHM 
will improve its effectiveness. [29] assessed bridge damage 
using DL based approach with convolutional variational auto 
encoders (CVAE). This method detects damage by analyzing 
vehicle acceleration data in real time through Continuous 
Wavelet Transform (CWT) images. The results demonstrated 
the method’s ability to classify bridges as either healthy or 
damaged under various conditions.  [36] analyzed cracks 
using unmanned aerial vehicles (UAVs). They compared 
traditional ML methods with TL to build CNN models for 
damage detection. Their results showed that the proposed 
device enables effective real-time damage detection. The 
authors suggest using Generative Adversarial Networks 
(GANs) to improve the training data and improve the model 
accuracy.  [32] focused on improving defect detection in SHM 



using Internet of Things (IoT) sensors. Three methods were 
tested such as, Interquartile Range (IQR), LSTM with AE, and 
time-series decomposition. IQR struggled to detect complex 
defects, while LSTM-AE performed better by capturing data 
patterns over time. Time-series decomposition was the most 
effective, identifying more defects. The study suggests that 
continuous data collection, along with regression and ANN 
will further improve SHM systems for better structural 
management. [39] investigated the use of DL techniques such 
as CNN, RNN, capsule neural networks (CapsNet), and neural 
transformers (NT) to improve the SHM of road bridges for 
improved maintenance and safety. The results demonstrated 
more accurate and comprehensive assessments of bridge 
conditions over time. The authors suggest that further 
developments in DL technologies for SHM will improve the 
accuracy and scalability of different structural systems. [38] 
reviewed different learning methods for detecting potholes 
and cracks in road pavements. They highlighted the use of 
semantic segmentation in images to identify these issues. 

They also noted that DL techniques, especially CNNs, are 
effective for analyzing road images to detect damage. The 
authors concluded that recent advancements in DL can reduce 
costs and make monitoring more scalable. They suggested that 
using Red Green Blue-Depth (RGB-D) technology and high-
resolution cameras would provide better data for NNs to 
improve the accuracy of damage detection. [35] reviewed new 
data fusion techniques for SHM, that use different data 
sources to improve the decision-making process. They 
examined traditional and DL based methods. They suggest 
that integrating DL with large language models (LLMs) will 
boost efficiency and reduce costs in SHM applications. After 
evaluating the significant ML and DL methods and their 
applications in conducting SHM and predicting RSL of 
structures are briefly summarized, and the taxonomy of this 
study is presented as shown in Fig. 5. And results of these 
studies are evaluated and presented in Table.2. 

 

 

 
 

Fig. 5. The taxonomy of ML and DL methods based on their application in SHM. 

 



 

TABLE II.  EVALUATION OF RESULTS FROM REVIEWD STUDIES 

 

As shown in the above Table.2, various studies have 

been evaluated and presented. These studies highlight the role 

of significant ML and DL methods in monitoring the 

structural health of buildings and predicting their RSL. 

Conventional ML methods like SVM and RF achieve high 

accuracy with low computational costs. For example, SVM 

models by [24] and RF model [18] achieved promising 

accuracies. However, DL models demonstrate optimal results 

in complex applications. Such as, EfficientDet and YOLO 

model by [27] and CNN model by [36] are effective in pattern 

recognition and image analysis. While LSTM networks [19] 

perform well with time-series data.  The DL methods 

effectively learn complex and nonlinear relationships even 

with limited data [38-41]. In contrast, ML models are often 

less efficient, making them less suitable for handling large 

datasets and real-time detection. This comparison highlights 

DL’s transformative role in advanced pattern recognition 

applications. 

IV. CONCLUSIONS 

This study aimed to provide a methodology to 
systematically review the research on the use of ML and DL 
in SHM and predicting the RSL of buildings. The most 
significant ML and DL techniques for monitoring structural 
health and predicting the RSL of buildings are reviewed using 
the PRISMA methodology. Based on our findings, both ML 
and DL have proven to be significant approaches in the field 
of SHM. Several studies have demonstrated the effectiveness 
of these methods in detecting structural defects and predicting 
the RSL of structures such as buildings and bridges. 
Specifically, DL techniques, including advanced neural 
networks like CNNs, AE, GAN and LSTM networks, are most 
effective in analyzing complex sensor data. These techniques 
are transforming SHM by improving the accuracy, scalability, 
and efficiency of monitoring systems. These approaches not 
only improve the accuracy of damage detection but also 
enable real-time monitoring. This is very important for 
maintaining the safety and durability of critical structure. The 
integration of ML and DL into SHM marks a big advancement 
in smart and sustainable structural management. Integration of 
DL with LLMs, UAVs, IoT, and Smart Sensors will shape 
smart and sustainable infrastructure for the future. The future 
research aims to develop a DL based model to effectively 
monitor the structural health and predict the service life of 
buildings. 
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ABBREVIATIONS 

Abbreviation Definition Abbreviation Definition 

ML Machine Learning CNN Convolutional Neural Network 

DL Deep Learning MAE Mean Absolute Error  

RSL Remaining Service Life IRI International Roughness Index 

SHM Structural Health Monitoring CC Correlation Coefficients 

FOS Fiber Optic Sensors  SI Scatter Indices  

FBG Fiber Bragg Grating WI Willmott’s Indices 

ITTs Indirect Tensile Tests PCA Principal Component Analysis 

FWD Falling Weight Deflectometer DT Decision Tree 

TSD Traffic Speed Deflectometer  VoI Value Of Information  

PCI Pavement Condition Index  WIM Weigh-In-Motion 

LWD Lightweight Deflectometer  SANNs Spiking Astrocyte Neural Networks 

DNN Deep Neural Network  PCT Principal Component Thermography 

SVR Support Vector Regression  MAP Mean Average Precision 

GEP Gene Expression Programming MAVs Multirotor Aerial Vehicles 

SVR-FOA SVR Optimized Fruit Fly Optimization Algorithm NNs Neural Networks 

Authors Method Avg. 

Accur

acy 

RMSE Avg. 

MAE 

CC F1-score 

Burrello et al., 

2022 

SVR - - 0.34 - - 

Karballaeezad

eh et al., 2019 

SVR 95% 0.14 - - - 

Karballaeezad
eh et al., 2020 

RF-GA - - - -0.031 - 

Soni et al., 
2023 

SVM 96% - - - - 

Dugalam & 

Prakash, 2024 

RF 97% - - - - 

Nabipour et 
al., 2019 

GEP - - - 0.874 - 

Belcore et 
al.,2022 

RF - - - - 0.750 

Kulkarni et al., 

2023 

  YOLO 85% - - - - 

Zhang et al., 

2024 

LSTM - 1.1974 - - - 

Mishra et al., 
2021 

DNN 90% - - - - 

Malik et al., 

2022 

CNN 85.5% - - - - 



HWD Heavy Weight Deflectometer Mask-RCNN Mask Recurrent Neural Network 

SVM Support Vector Machines  RTMDet-s Real-Time Multi-Task Detection-Small  

ANN Artificial Neural Networks  TL Transfer Learning 

MLP Multi-Layered Perceptron CVAE Convolutional Variational Auto Encoders  

RF Random Forest  CWT Continuous Wavelet Transform 

RF-GA Genetic Algorithm Trained RF GANs Generative Adversarial Networks 

RSP Road Surface Profiler IoT Internet Of Things 

ET Effective Temperature  IQR Interquartile Range 

TD Temperature Difference CapsNet Capsule Neural Networks 

PRISMA 
Preferred Reporting Items For Systematic Reviews And 

Meta-Analyses  

NT Neural Transformers 

TEL Traffic Load Estimation RGB-D Red Green Blue-Depth 

LR Linear Regression LLMs Large Language Models 

KNN K-Nearest Neighbors   
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